Suppr超能文献

大肠杆菌对氟喹诺酮类抗生素的耐受性取决于 SOS 反应途径的特定成分。

Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.

机构信息

Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts 02115.

出版信息

Genetics. 2013 Dec;195(4):1265-76. doi: 10.1534/genetics.113.152306. Epub 2013 Sep 27.

Abstract

Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance.

摘要

细菌暴露在杀菌性氟喹诺酮(FQ)抗生素下可以在不发生遗传抗性的情况下存活。这些表型抗性细胞(通常称为“持久细胞”)的存活取决于 SOS 基因网络。我们已经检查了所有已知的 SOS 调节基因的突变体,以确定在大肠杆菌中耐受所必需的功能。DinG 和 UvrD 解旋酶以及 Holliday 连接处理酶 RuvA 和 RuvB 的缺失会导致存活能力下降。对各个突变体的分析表明,除了双链断裂的修复外,耐受还取决于复制叉崩塌和转录复合物停滞的修复。recF 突变会导致存活能力增加,这表明 RecAF 重组是一种以前与 FQ 致死性无关的解毒机制。DinG 在上游作用于 SOS,促进其诱导,而 RuvAB 仅参与修复。UvrD 直接促进由 FQ 诱导的损伤引发的所有修复过程,并防止 RecAF 依赖性错误修复,使其成为耐受所必需的关键 SOS 功能之一。

相似文献

1
Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.
Genetics. 2013 Dec;195(4):1265-76. doi: 10.1534/genetics.113.152306. Epub 2013 Sep 27.
2
Analysis of RuvABC and RecG involvement in the escherichia coli response to the covalent topoisomerase-DNA complex.
J Bacteriol. 2010 Sep;192(17):4445-51. doi: 10.1128/JB.00350-10. Epub 2010 Jul 2.
4
Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD.
Genetics. 2011 Sep;189(1):23-36. doi: 10.1534/genetics.111.130161. Epub 2011 Jul 29.
6
Role of oxidative stress in persister tolerance.
Antimicrob Agents Chemother. 2012 Sep;56(9):4922-6. doi: 10.1128/AAC.00921-12. Epub 2012 Jul 9.
7
8
Specificity in suppression of SOS expression by recA4162 and uvrD303.
DNA Repair (Amst). 2013 Dec;12(12):1072-80. doi: 10.1016/j.dnarep.2013.09.003. Epub 2013 Sep 29.

引用本文的文献

1
Conservation and divergence of ciprofloxacin persister survival mechanisms between Pseudomonas aeruginosa and Escherichia coli.
PLoS Genet. 2025 Sep 2;21(9):e1011840. doi: 10.1371/journal.pgen.1011840. eCollection 2025 Sep.
3
Pleiotropic cellular responses underlying antibiotic tolerance in .
Front Microbiol. 2024 Nov 22;15:1493849. doi: 10.3389/fmicb.2024.1493849. eCollection 2024.
4
Insights into antibiotic resistance promoted by quinolone exposure.
Antimicrob Agents Chemother. 2025 Jan 31;69(1):e0099724. doi: 10.1128/aac.00997-24. Epub 2024 Nov 26.
5
Identification and genetic dissection of convergent persister cell states.
Nature. 2024 Dec;636(8042):438-446. doi: 10.1038/s41586-024-08124-2. Epub 2024 Nov 6.
8
Cysteine Homeostasis Disturbance in Escherichia coli Caused by Exposure to Ciprofloxacin.
Bull Exp Biol Med. 2024 Apr;176(6):791-795. doi: 10.1007/s10517-024-06110-2. Epub 2024 Jun 19.
9
Regulation of Cysteine Homeostasis and Its Effect on Sensitivity to Ciprofloxacin in LB Medium.
Int J Mol Sci. 2024 Apr 17;25(8):4424. doi: 10.3390/ijms25084424.
10
Differential impacts of DNA repair machinery on fluoroquinolone persisters with different chromosome abundances.
mBio. 2024 May 8;15(5):e0037424. doi: 10.1128/mbio.00374-24. Epub 2024 Apr 2.

本文引用的文献

1
Bacterial persistence and toxin-antitoxin loci.
Annu Rev Microbiol. 2012;66:103-23. doi: 10.1146/annurev-micro-092611-150159.
2
Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers.
FEBS Lett. 2012 Jul 30;586(16):2529-34. doi: 10.1016/j.febslet.2012.06.021. Epub 2012 Jun 21.
3
R-loop-mediated genomic instability is caused by impairment of replication fork progression.
Genes Dev. 2011 Oct 1;25(19):2041-56. doi: 10.1101/gad.17010011.
4
Bacterial persistence by RNA endonucleases.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13206-11. doi: 10.1073/pnas.1100186108. Epub 2011 Jul 25.
5
Pathways of resistance to thymineless death in Escherichia coli and the function of UvrD.
Genetics. 2011 Sep;189(1):23-36. doi: 10.1534/genetics.111.130161. Epub 2011 Jul 29.
6
Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response.
Nucleic Acids Res. 2011 Aug;39(15):6546-57. doi: 10.1093/nar/gkr265. Epub 2011 May 16.
7
Phenotypic landscape of a bacterial cell.
Cell. 2011 Jan 7;144(1):143-56. doi: 10.1016/j.cell.2010.11.052. Epub 2010 Dec 23.
8
Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogeneous expression.
BMC Microbiol. 2010 Nov 11;10:283. doi: 10.1186/1471-2180-10-283.
9
Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis.
J Bacteriol. 2010 Dec;192(23):6191-9. doi: 10.1128/JB.01651-09. Epub 2010 Oct 8.
10
Persister cells.
Annu Rev Microbiol. 2010;64:357-72. doi: 10.1146/annurev.micro.112408.134306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验