University of California, San Francisco, 94143, USA.
Cell. 2011 Jan 7;144(1):143-56. doi: 10.1016/j.cell.2010.11.052. Epub 2010 Dec 23.
The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.
细菌中序列信息的爆炸式增长使得开发高通量、具有成本效益的方法来匹配基因与表型变得至关重要。我们以大肠杆菌作为原理验证,展示了将大规模化学基因组学与定量适应性测量相结合,提供了富含发现的高质量数据集。在数百种条件下平行探测突变文库的生长曲线,产生了超过 10000 种表型,使我们能够研究基因的必需性、发现基因功能和药物作用的线索,并了解细菌染色体的高级组织。我们强调了从该研究中得出的新信息,包括涉及多种抗生素耐药性的基因的见解,以及广泛使用的组合抗生素治疗(trimethoprim 和磺胺类药物)之间的协同作用。该数据集可在 http://ecoliwiki.net/tools/chemgen/ 上公开获取,它是微生物学和生物信息学社区的宝贵资源,因为它提供了数百个注释和未表征基因之间的高可信度关联,以及对几种理解甚少的药物作用模式的推断。