Wu Jer-Horng, Chuang Hui-Ping, Hsu Mao-Hsuan, Chen Wei-Yu
Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan, Republic of China.
Appl Environ Microbiol. 2013 Dec;79(24):7598-609. doi: 10.1128/AEM.02450-13. Epub 2013 Sep 27.
In this study, we established a rapid multiplex method to detect the relative abundances of amplified 16S rRNA genes from known cultivatable methanogens at hierarchical specificities in anaerobic digestion systems treating industrial wastewater and sewage sludge. The method was based on the hierarchical oligonucleotide primer extension (HOPE) technique and combined with a set of 27 primers designed to target the total archaeal populations and methanogens from 22 genera within 4 taxonomic orders. After optimization for their specificities and detection sensitivity under the conditions of multiple single-nucleotide primer extension reactions, the HOPE approach was applied to analyze the methanogens in 19 consortium samples from 7 anaerobic treatment systems (i.e., 513 reactions). Among the samples, the methanogen populations detected with order-level primers accounted for >77.2% of the PCR-amplified 16S rRNA genes detected using an Archaea-specific primer. The archaeal communities typically consisted of 2 to 7 known methanogen genera within the Methanobacteriales, Methanomicrobiales, and Methanosarcinales and displayed population dynamic and spatial distributions in anaerobic reactor operations. Principal component analysis of the HOPE data further showed that the methanogen communities could be clustered into 3 distinctive groups, in accordance with the distribution of the Methanosaeta, Methanolinea, and Methanomethylovorans, respectively. This finding suggested that in addition to acetotrophic and hydrogenotrophic methanogens, the methylotrophic methanogens might play a key role in the anaerobic treatment of industrial wastewater. Overall, the results demonstrated that the HOPE approach is a specific, rapid, and multiplexing platform to determine the relative abundances of targeted methanogens in PCR-amplified 16S rRNA gene products.
在本研究中,我们建立了一种快速多重方法,用于检测在处理工业废水和污水污泥的厌氧消化系统中,已知可培养产甲烷菌的扩增16S rRNA基因在不同层次特异性下的相对丰度。该方法基于层次寡核苷酸引物延伸(HOPE)技术,并结合了一组27种引物,这些引物旨在靶向4个分类目中22个属的古菌总数和产甲烷菌。在对多个单核苷酸引物延伸反应条件下的特异性和检测灵敏度进行优化后,HOPE方法被应用于分析来自7个厌氧处理系统的19个混合样品中的产甲烷菌(即513次反应)。在这些样品中,用目水平引物检测到的产甲烷菌群体占使用古菌特异性引物检测到的PCR扩增16S rRNA基因的>77.2%。古菌群落通常由甲烷杆菌目、甲烷微菌目和甲烷八叠球菌目中2至7个已知产甲烷菌属组成,并在厌氧反应器运行中呈现出群体动态和空间分布。对HOPE数据的主成分分析进一步表明,产甲烷菌群落可根据甲烷鬃菌属、甲烷线菌属和甲烷甲基营养菌属的分布分别聚类为3个不同的组。这一发现表明,除了乙酸营养型和氢营养型产甲烷菌外,甲基营养型产甲烷菌可能在工业废水的厌氧处理中起关键作用。总体而言,结果表明HOPE方法是一个用于确定PCR扩增的16S rRNA基因产物中目标产甲烷菌相对丰度的特异性、快速且多重的平台。