From the Beckman Institute for Advanced Science and Technology and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
J Biol Chem. 2013 Nov 15;288(46):32837-51. doi: 10.1074/jbc.M113.486670. Epub 2013 Sep 27.
During eukaryotic translation, peptides/proteins are created using L-amino acids. However, a D-amino acid-containing peptide (DAACP) can be produced through post-translational modification via an isomerase enzyme. General approaches to identify novel DAACPs and investigate their function, particularly in specific neural circuits, are lacking. This is primarily due to the difficulty in characterizing this modification and due to the limited information on neural circuits in most species. We describe a multipronged approach to overcome these limitations using the sea slug Aplysia californica. Based on bioinformatics and homology to known DAACPs in the land snail Achatina fulica, we targeted two predicted peptides in Aplysia, GFFD, similar to achatin-I (GdFAD versus GFAD, where dF stands for D-phenylalanine), and YAEFLa, identical to fulyal (YdAEFLa versus YAEFLa), using stereoselective analytical methods, i.e. MALDI MS fragmentation analysis and LC-MS/MS. Although YAEFLa in Aplysia was detected only in an all L-form, we found that both GFFD and GdFFD were present in the Aplysia CNS. In situ hybridization and immunolabeling of GFFD/GdFFD-positive neurons and fibers suggested that GFFD/GdFFD might act as an extrinsic modulator of the feeding circuit. Consistent with this hypothesis, we found that GdFFD induced robust activity in the feeding circuit and elicited egestive motor patterns. In contrast, the peptide consisting of all L-amino acids, GFFD, was not bioactive. Our data indicate that the modification of an L-amino acid-containing neuropeptide to a DAACP is essential for peptide bioactivity in a motor circuit, and thus it provides a functional significance to this modification.
在真核翻译过程中,肽/蛋白质是使用 L-氨基酸创建的。然而,通过异构酶酶的翻译后修饰,可以产生含有 D-氨基酸的肽(DAACP)。缺乏识别新型 DAACP 并研究其功能的一般方法,特别是在特定的神经回路中。这主要是由于难以表征这种修饰以及由于大多数物种中神经回路的信息有限。我们描述了一种使用海蛞蝓 Aplysia californica 克服这些限制的多管齐下的方法。基于生物信息学和与陆地蜗牛 Achatina fulica 中已知的 DAACP 的同源性,我们针对 Aplysia 中的两个预测肽 GFFD 和 YAEFLa 进行了靶向,GFFD 类似于 achatin-I(GdFAD 与 GFAD,其中 dF 代表 D-苯丙氨酸),而 YAEFLa 与 fulyal 相同(YdAEFLa 与 YAEFLa),使用立体选择性分析方法,即 MALDI MS 碎裂分析和 LC-MS/MS。尽管在 Aplysia 中仅检测到 YAEFLa 的全 L 形式,但我们发现 GFFD 和 GdFFD 均存在于 Aplysia CNS 中。GFFD/GdFFD 阳性神经元和纤维的原位杂交和免疫标记表明,GFFD/GdFFD 可能作为摄食回路的外源性调节剂发挥作用。与该假说一致,我们发现 GdFFD 诱导摄食回路产生强烈的活性并引发排粪运动模式。相比之下,由全 L-氨基酸组成的肽 GFFD 没有生物活性。我们的数据表明,L-氨基酸含量的神经肽的修饰对于运动回路中肽的生物活性是必不可少的,因此它为这种修饰提供了功能意义。