Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory , Berkeley , California 94720, United States.
Nano Lett. 2013;13(11):5397-402. doi: 10.1021/nl402953h. Epub 2013 Oct 2.
To address the significant challenges associated with large volume change of micrometer-sized Si particles as high-capacity anode materials for lithium-ion batteries, we demonstrated a simple but effective strategy: using Si nanoparticles as a structural and conductive additive, with micrometer-sized Si as the main lithium-ion storage material. The Si nanoparticles connected into the network structure in situ during the charge process, to provide electronic connectivity and structure stability for the electrode. The resulting electrode showed a high specific capacity of 2500 mAh/g after 30 cycles with high initial Coulombic efficiency (73%) and good rate performance during electrochemical lithiation and delithiation: between 0.01 and 1 V vs Li/Li(+).
为了解决作为锂离子电池高容量阳极材料的微米级硅颗粒大体积变化所带来的重大挑战,我们提出了一种简单而有效的策略:使用硅纳米颗粒作为结构和导电添加剂,以微米级硅作为主要的锂离子存储材料。在充电过程中,硅纳米颗粒原位连接成网络结构,为电极提供电子连通性和结构稳定性。所得电极在 30 次循环后具有 2500mAh/g 的高比容量,初始库仑效率(73%)高,在电化学锂化和脱锂过程中具有良好的倍率性能:在 0.01 到 1V 相对于 Li/Li(+)之间。