Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS , Bethesda, Maryland 20892, United States.
Biochemistry. 2013 Oct 29;52(43):7678-88. doi: 10.1021/bi400962r. Epub 2013 Oct 15.
During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.
在治疗过程中,HIV-1 蛋白酶 (PR) 迅速发生突变,通过降低与临床蛋白酶抑制剂 (PI) 的亲和力而产生耐药性。由于这些独特的耐药突变会降低病毒复制的适应性,因此会选择能够恢复构象稳定性和活性同时保留耐药性的突变,从而进一步进化。在这里,我们确定了几种补偿机制,通过这些机制,一个具有 20 个突变(PR20)的极端耐药突变体具有超过 5 倍的 Kd 值和超过 4000 倍的对 darunavir 的亲和力,从而发挥作用。(1) PR20 可以切割 Gag 多蛋白底物,但效率较低,这些底物对病毒成熟至关重要。(2) PR20 二聚体,表现出明显增强的热稳定性,其自身水解作用明显减弱,因此可能延长其在体内的寿命。(3) PR20 的稳定性增强是由于单体折叠的稳定。单体 PR20(T26A)和二聚体 PR20 的 Tm 值均比其 PR 对应物高 6-7.5°C。PR20 中两个特定的突变,即位于自身水解位点的 L33F 和 L63P,使单体 PR(T26A)的 Tm 值升高约 8°C,与 PR20(T26A)相似。然而,如果没有其他补偿性突变,如 PR20 中所见,L33F 和 L63P 取代物一起既不能限制自身水解,也不能显著降低对 darunavir 的结合亲和力。为了确定二聚体稳定性是否有助于与抑制剂的结合亲和力,我们检查了 PR 和 PR(D25N)的单链二聚体,其中相应的相同单体单元通过 GGSSG 序列共价连接。亚基的连接没有明显改变抑制剂结合的 ΔTm;因此,通过连接稳定化似乎对增强抑制剂亲和力没有直接影响。