Sackin H
Dept. of Biophysics and Physiology, Cornell Univ. Medical College, New York, N.Y. 10021.
Prog Clin Biol Res. 1990;334:231-49.
In summary, these studies report a voltage-gated, stretch-activated K channel at the basolateral membrane of amphibian proximal tubule. In the normal range of potential, any reduction in metabolic activity leading to membrane depolarization would reduce the open-probability of the basolateral K channel, thereby preventing excessive loss of K out of the cell. This type of voltage gating is consistent with the decrease in macroscopic K conductance observed in perfused frog tubules after cell depolarization (Messner et al., 1985). However, it does not account for the delayed increase in basolateral K conductance that accompanies Na-substrate cotransport across the apical membrane. The stretch-activation property of basolateral K channels may explain both electrolyte and volume homeostasis in the amphibian proximal tubule. Na-substrate cotransport produces a gradual increase in cell volume in several preparations (Hempling and Hare 1961; Hacking and Eddy 1981; Hudson and Schultz 1988;). Hence, the observed increase in K conductance during luminal addition of Na-cotransported substrates may be mediated by small changes in cell volume. For example, a stretch-activated K channel, stimulated by a 1% increase in cell volume, would allow K to exit the cell down its electrochemical gradient, thereby balancing the increased K uptake associated with greater Na pump activity. A number of studies have provided evidence that cell swelling increases macroscopic K conductance (Davis and Finn 1982; Germann et al. 1986; Grinstein et al. 1982; Grinstein et al. 1984; Hamill 1983; Hoffmann 1985; Lau et al. 1984; Lopes and Guggino 1987; Richards and Dawson 1986) as well as chloride channel activity (Hudson and Schultz 1988). However, the present study is the first to suggest that the swelling-induced increase in basolateral K conductance results from stretch-activated K channels. This same stretch-activation property may also be involved in the VRD that occurs during exposure of proximal tubule cells to hypotonic media (Dellesaga and Grantham 1973; Welling et al. 1985; Lopes and Guggino 1987; Kirk et al 1987). Since cell swelling undoubtably increases membrane tension (Kelly and Macklem 1988), swollen amphibian proximal tubule cells would lose K because of an increase in the open probability of stretch-activated K channels. The additional exit of bicarbonate and water would restore the cells to their original volume.
总之,这些研究报道了两栖动物近端小管基底外侧膜上存在一种电压门控、牵张激活的钾通道。在正常电位范围内,任何导致膜去极化的代谢活动降低都会降低基底外侧钾通道的开放概率,从而防止钾过度流失到细胞外。这种电压门控类型与细胞去极化后在灌注蛙肾小管中观察到的宏观钾电导降低是一致的(梅斯纳等人,1985年)。然而,它无法解释伴随钠底物共转运穿过顶膜时基底外侧钾电导的延迟增加。基底外侧钾通道的牵张激活特性可能解释了两栖动物近端小管中的电解质和体积稳态。在几种制剂中,钠底物共转运会使细胞体积逐渐增加(亨普林和黑尔,1961年;哈金和埃迪,1981年;哈德森和舒尔茨,1988年)。因此,在管腔中添加钠共转运底物期间观察到的钾电导增加可能是由细胞体积的微小变化介导的。例如,一个由细胞体积增加1%刺激的牵张激活钾通道,会使钾顺着其电化学梯度流出细胞,从而平衡与更大的钠泵活性相关的钾摄取增加。许多研究提供了证据表明细胞肿胀会增加宏观钾电导(戴维斯和芬恩,1982年;杰曼等人,1986年;格林斯坦等人,1982年;格林斯坦等人,1984年;哈米尔,1983年;霍夫曼,1985年;刘等人,1984年;洛佩斯和古吉诺,1987年;理查兹和道森,1986年)以及氯通道活性(哈德森和舒尔茨,1988年)。然而,本研究首次表明肿胀诱导的基底外侧钾电导增加是由牵张激活钾通道引起的。这种相同的牵张激活特性也可能参与近端小管细胞暴露于低渗介质时发生的VRD(德莱萨加和格兰瑟姆,1973年;韦林等人,1985年;洛佩斯和古吉诺,1987年;柯克等人,1987年)。由于细胞肿胀无疑会增加膜张力(凯利和麦克勒姆,1988年),肿胀的两栖动物近端小管细胞会因牵张激活钾通道开放概率增加而失去钾。碳酸氢盐和水的额外流出将使细胞恢复到原来的体积。