Suppr超能文献

利用基于网络的生物信息学方法鉴定肝细胞癌的生物标志物。

Identification of biomarkers for hepatocellular carcinoma using network-based bioinformatics methods.

机构信息

Department of Radiology, College of Basic Medicine, Chongqing Medical University, No,1 Yixueyuan Road, Yuzhong District, Chongqing 400016, P,R, China.

出版信息

Eur J Med Res. 2013 Oct 1;18(1):35. doi: 10.1186/2047-783X-18-35.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide. Despite several efforts to elucidate molecular mechanisms involved in this cancer, they are still not fully understood.

METHODS

To acquire further insights into the molecular mechanisms of HCC, and to identify biomarkers for early diagnosis of HCC, we downloaded the gene expression profile on HCC with non-cancerous liver controls from the Gene Expression Omnibus (GEO) and analyzed these data using a combined bioinformatics approach.

RESULTS

The dysregulated pathways and protein-protein interaction (PPI) network, including hub nodes that distinguished HCCs from non-cancerous liver controls, were identified. In total, 29 phenotype-related differentially expressed genes were included in the PPI network. Hierarchical clustering showed that the gene expression profile of these 29 genes was able to differentiate HCC samples from non-cancerous liver samples. Among these genes, CDC2 (Cell division control protein 2 homolog), MMP2 (matrix metalloproteinase-2) and DCN (Decorin were the hub nodes in the PPI network.

CONCLUSIONS

This study provides a portfolio of targets useful for future investigation. However, experimental studies should be conducted to verify our findings.

摘要

背景

肝细胞癌(HCC)是全球最常见的癌症类型之一。尽管已经做出了一些努力来阐明涉及这种癌症的分子机制,但这些机制仍未被完全理解。

方法

为了更深入地了解 HCC 的分子机制,并确定用于 HCC 早期诊断的生物标志物,我们从基因表达综合数据库(GEO)下载了 HCC 与非癌性肝脏对照的基因表达谱,并使用联合生物信息学方法对这些数据进行了分析。

结果

确定了失调的途径和蛋白质-蛋白质相互作用(PPI)网络,包括区分 HCC 与非癌性肝脏对照的枢纽节点。总共包括 29 个与表型相关的差异表达基因在内的 PPI 网络。层次聚类表明,这些 29 个基因的基因表达谱能够区分 HCC 样本和非癌性肝脏样本。在这些基因中,CDC2(细胞分裂控制蛋白 2 同源物)、MMP2(基质金属蛋白酶-2)和 DCN(Decorin)是 PPI 网络中的枢纽节点。

结论

本研究提供了一组有用的未来研究目标。然而,应进行实验研究来验证我们的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d481/4016278/435a679dc4e4/2047-783X-18-35-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验