Amin Amin, Antoine Philippe, Cornet Alain, Mallat Kamel, Urbain Xavier
Appl Opt. 2013 Aug 20;52(24):5894-902. doi: 10.1364/AO.52.005894.
An electro-optic (EO) sensing system for measuring free-space electric fields in the microwave range has been developed. The system is based on a phase modulation heterodyning technique using a Mach-Zehnder interferometer. In one of the arms of the interferometer, an acousto-optic frequency shifter is used to downconvert the frequency of the detected signal in order to discriminate it from parasites emitted at the external electric field frequency. The sensing part is a LiTaO crystal placed in a Fabry-Perot cavity. The cavity aims at enhancing the sensitivity of the measurements. Cavity-based EO setups already used in the literature propose this sensitivity enhancement at the expense of the frequency bandwidth, whereas our setup allows this without a major impact on the frequency bandwidth. Electric fields are measured at both 15 kHz and 2.4 GHz with cavities of two different finesses; the best EO phase retardation gains obtained with the cavity are 34 and 60, respectively. The minimum detectable electric field is 0.003 V⋅m⋅Hz.
已开发出一种用于测量微波范围内自由空间电场的电光(EO)传感系统。该系统基于使用马赫-曾德尔干涉仪的相位调制外差技术。在干涉仪的一个臂中,使用声光频率移位器对检测到的信号进行频率下转换,以便将其与在外部电场频率下发射的寄生信号区分开来。传感部分是置于法布里-珀罗腔中的钽酸锂晶体。该腔旨在提高测量的灵敏度。文献中已使用的基于腔的电光装置是以牺牲频率带宽为代价来提高这种灵敏度的,而我们的装置在不对频率带宽产生重大影响的情况下实现了这一点。使用两种不同精细度的腔在15 kHz和2.4 GHz下测量电场;使用该腔获得的最佳电光相位延迟增益分别为34和60。最小可检测电场为0.003 V·m·Hz。