Suppr超能文献

通过源自球体光学散射的蒙特卡罗方法对组织中漫射光子迁移进行模拟。

Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids.

作者信息

Hart Vern P, Doyle Timothy E

出版信息

Appl Opt. 2013 Sep 1;52(25):6220-9. doi: 10.1364/AO.52.006220.

Abstract

A Monte Carlo method was derived from the optical scattering properties of spheroidal particles and used for modeling diffuse photon migration in biological tissue. The spheroidal scattering solution used a separation of variables approach and numerical calculation of the light intensity as a function of the scattering angle. A Monte Carlo algorithm was then developed which utilized the scattering solution to determine successive photon trajectories in a three-dimensional simulation of optical diffusion and resultant scattering intensities in virtual tissue. Monte Carlo simulations using isotropic randomization, Henyey-Greenstein phase functions, and spherical Mie scattering were additionally developed and used for comparison to the spheroidal method. Intensity profiles extracted from diffusion simulations showed that the four models differed significantly. The depth of scattering extinction varied widely among the four models, with the isotropic, spherical, spheroidal, and phase function models displaying total extinction at depths of 3.62, 2.83, 3.28, and 1.95 cm, respectively. The results suggest that advanced scattering simulations could be used as a diagnostic tool by distinguishing specific cellular structures in the diffused signal. For example, simulations could be used to detect large concentrations of deformed cell nuclei indicative of early stage cancer. The presented technique is proposed to be a more physical description of photon migration than existing phase function methods. This is attributed to the spheroidal structure of highly scattering mitochondria and elongation of the cell nucleus, which occurs in the initial phases of certain cancers. The potential applications of the model and its importance to diffusive imaging techniques are discussed.

摘要

一种蒙特卡罗方法是根据椭球体粒子的光学散射特性推导出来的,并用于对生物组织中的漫射光子迁移进行建模。椭球体散射解采用变量分离方法,并对作为散射角函数的光强进行数值计算。然后开发了一种蒙特卡罗算法,该算法利用散射解来确定光学扩散三维模拟中连续的光子轨迹以及虚拟组织中的最终散射强度。还开发了使用各向同性随机化、亨耶伊 - 格林斯坦相位函数和球形米氏散射的蒙特卡罗模拟,并用于与椭球体方法进行比较。从扩散模拟中提取的强度分布表明这四种模型有显著差异。四种模型的散射消光深度差异很大,各向同性、球形、椭球体和相位函数模型的总消光深度分别为3.62厘米、2.83厘米、3.28厘米和1.95厘米。结果表明,先进的散射模拟可通过区分扩散信号中的特定细胞结构用作诊断工具。例如,模拟可用于检测大量变形细胞核的浓度,这些浓度表明处于癌症早期阶段。所提出的技术被认为比现有的相位函数方法对光子迁移的描述更符合物理实际。这归因于高度散射的线粒体的椭球体结构以及某些癌症初始阶段细胞核的伸长。讨论了该模型的潜在应用及其对漫射成像技术的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验