Gupta Monika, Madan A K
Faculty of Pharmaceutical Sciences, M.D. University, Rohtak 124 001, India.
Int J Comput Biol Drug Des. 2013;6(4):294-317. doi: 10.1504/IJCBDD.2013.056710. Epub 2013 Sep 30.
In the present study both classification and correlation techniques have been successfully employed for the development of the models of diverse nature for the prediction of melanocortin 4-receptor (MC4 R) agonist activity using a dataset comprising of 56 analogues of 4-substituted piperidine-4-ol derivatives. Decision tree (DT), random forest (RF), moving average analysis (MAA) and multiple linear regression (MLR) were utilised for development of the said models. The statistical significance of models was assessed through specificity, sensitivity, overall accuracy, Mathew's correlation coefficient (MCC) and intercorrelation analysis. High accuracy of prediction up to 98% was observed using these models. Proposed models offer vast potential for providing lead structures for the development of potent therapeutic agents for the treatment of male sexual dysfunction.
在本研究中,分类和相关技术已成功用于开发多种性质的模型,以使用包含56种4-取代哌啶-4-醇衍生物类似物的数据集预测黑皮质素4受体(MC4R)激动剂活性。决策树(DT)、随机森林(RF)、移动平均分析(MAA)和多元线性回归(MLR)被用于开发上述模型。通过特异性、敏感性、总体准确性、马修相关系数(MCC)和相互相关性分析评估模型的统计学意义。使用这些模型观察到高达98%的高精度预测。所提出的模型为开发用于治疗男性性功能障碍的有效治疗剂提供先导结构具有巨大潜力。