Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA.
J Chem Phys. 2013 Sep 28;139(12):121929. doi: 10.1063/1.4820876.
Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.
细胞中生物分子运输的调控涉及蛋白质内的步骤,如门控和通道通过,但这些步骤之前还有蛋白质外的步骤,即扩散接近和溶质的进入。这些蛋白质外的步骤在通常具有高度特殊性的环境中在 10-100nm 长度尺度上发展,其特征在于蛋白质的几何形状、周围的静电场和位置。为了在相关分辨率下考虑溶质的能量学和在该环境中的溶质的迁移率,我们提出了一种基于马尔可夫状态模型框架的基于粒子的扩散动力学模型。必要的输入数据包括从蛋白质及其环境的广泛分子动力学模拟中生成的扩散系数和平均力势图,这些模拟样本涵盖了数纳秒的持续时间。所提出的扩散模型可以描述超过微秒持续时间的输运过程,这些过程与生物功能相关,并且超出了分子动力学模拟的范围。为此,系统由根据密度函数分布的 Voronoi 网格细胞的位置、体积和表面元素指定的离散状态集表示,该密度函数解析了通常复杂的相关扩散空间。针对通用扩散空间进行的验证测试表明,该模型和相关的布朗运动算法在诸如时间步长、扩散系数和网格密度等大范围参数值下都是可行的。该方法的一个具体应用是在埃希氏菌(Escherichia coli)小电导机械敏感通道 ecMscS 周围和通过该通道的离子扩散。