J Am Chem Soc. 2013 Nov 6;135(44):16478-89. doi: 10.1021/ja406848s.
Neutron diffraction at 11.4 and 295 K and solid-state (67)Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4–n(NC)n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn–N and Zn–C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ~0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and the local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn–C≡N–Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contributions at temperatures up to 295 K.
在 11.4 和 295 K 下进行中子衍射和固态 (67)Zn NMR 用于确定无序、负热膨胀 (NTE) 材料 Zn(CN)2 中的局部和平均结构。固态 NMR 不仅证实了固体中存在的 C≡N 基团的头尾无序,而且还提供了有关不同 Zn(CN)4–n(NC)n 四面体物种的相对丰度的信息,这些物种并不遵循简单的二项式分布。Zn(CN)4 和 Zn(NC)4 物种的出现概率远低于二项式理论预测,这支持了它们比其他局部排列具有更高能量的结论。最低能量排列是 Zn(CN)2(NC)2。在 11.4 K 下使用全中子衍射,对布拉格衍射和衍生的总相关函数进行分析,首次实验确定了单个 Zn–N 和 Zn–C 键长分别为 1.969(2) 和 2.030(2) Å。键长的差异非常小,约为 0.06 Å,这意味着仅使用布拉格衍射无法单独获得这些键长。全中子衍射还提供了导致 Zn(CN)2 发生 NTE 的平均和局部原子位移的信息。导致 NTE 的主要运动被证明是那些导致单个 Zn–C≡N–Zn 键中的碳原子和氮原子位移到 Zn···Zn 轴的同一侧。以前在 X 射线研究中认为导致 NTE 行为的碳原子和氮原子向 Zn···Zn 轴的相反侧的位移实际上在高达 295 K 的温度下贡献可以忽略不计。