Materials Science and Technology Division, Oak Ridge National Laboratory, One Bethel Valley, PO Box 2008, MS 6138, Oak Ridge, TN 37831, USA.
Phys Chem Chem Phys. 2013 Nov 21;15(43):18915-20. doi: 10.1039/c3cp53052c.
Nanocrystalline ceramic-oxides are prone to grain growth rendering their highly attractive properties practically unusable. Using atomistic simulations of ceria as a model material system, we elucidate a framework to design dopant-pinned grain boundaries that prevent this grain growth. While in metallic systems it has been shown that a large mismatch between host and dopant atomic sizes prevents grain growth, in ceramic-oxides we find that this concept is not applicable. Instead, we find that dopant-oxygen vacancy interaction, i.e., dopant migration energy in the presence of an oxygen vacancy, and dopant-oxygen vacancy binding energy are the controlling factors in grain growth. Our prediction agrees with and explains previous experimental observations.
纳米晶陶瓷氧化物容易发生晶粒生长,从而使它们极具吸引力的特性实际上无法使用。我们使用氧化铈的原子模拟作为模型材料系统,阐明了设计掺杂剂钉扎晶界的框架,以防止这种晶粒生长。虽然在金属系统中已经表明,主体和掺杂原子尺寸之间的大不匹配可以防止晶粒生长,但在陶瓷氧化物中,我们发现这个概念并不适用。相反,我们发现掺杂剂-氧空位相互作用,即存在氧空位时掺杂剂的迁移能和掺杂剂-氧空位结合能是控制晶粒生长的因素。我们的预测与之前的实验观察结果一致,并对其进行了解释。