Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Nature. 2013 Oct 3;502(7469):85-8. doi: 10.1038/nature12532.
Materials undergoing reversible solid-to-solid martensitic phase transformations are desirable for applications in medical sensors and actuators, eco-friendly refrigerators and energy conversion devices. The ability to pass back and forth through the phase transformation many times without degradation of properties (termed 'reversibility') is critical for these applications. Materials tuned to satisfy a certain geometric compatibility condition have been shown to exhibit high reversibility, measured by low hysteresis and small migration of transformation temperature under cycling. Recently, stronger compatibility conditions called the 'cofactor conditions' have been proposed theoretically to achieve even better reversibility. Here we report the enhanced reversibility and unusual microstructure of the first martensitic material, Zn45Au30Cu25, that closely satisfies the cofactor conditions. We observe four striking properties of this material. (1) Despite a transformation strain of 8%, the transformation temperature shifts less than 0.5 °C after more than 16,000 thermal cycles. For comparison, the transformation temperature of the ubiquitous NiTi alloy shifts up to 20 °C in the first 20 cycles. (2) The hysteresis remains approximately 2 °C during this cycling. For comparison, the hysteresis of the NiTi alloy is up to 70 °C (refs 9, 12). (3) The alloy exhibits an unusual riverine microstructure of martensite not seen in other martensites. (4) Unlike that of typical polycrystal martensites, its microstructure changes drastically in consecutive transformation cycles, whereas macroscopic properties such as transformation temperature and latent heat are nearly reproducible. These results promise a concrete strategy for seeking ultra-reliable martensitic materials.
经历可逆固-固马氏体相变的材料是医学传感器和执行器、环保冰箱和能量转换装置应用的理想选择。能够多次通过相变而不降低性能(称为“可逆性”)的能力对于这些应用至关重要。已经证明,经过调整以满足特定几何相容性条件的材料具有高的可逆性,其通过循环过程中的低滞后和相变温度的小迁移来衡量。最近,理论上提出了更强的相容性条件,称为“协同因子条件”,以实现更好的可逆性。在这里,我们报告了第一个马氏体材料 Zn45Au30Cu25 的增强的可逆性和异常微观结构,该材料非常符合协同因子条件。我们观察到该材料的四个显著特性。(1)尽管转变应变为 8%,但在超过 16,000 次热循环后,转变温度的变化小于 0.5°C。相比之下,普遍存在的 NiTi 合金在最初的 20 次循环中转变温度上升高达 20°C。(2)在这种循环过程中,滞后保持在大约 2°C。相比之下,NiTi 合金的滞后高达 70°C(参考文献 9、12)。(3)该合金表现出一种不常见的河流状马氏体微观结构,在其他马氏体中未见。(4)与典型的多晶马氏体不同,其微观结构在连续的相变循环中发生剧烈变化,而宏观性能(如转变温度和潜热)几乎可以重现。这些结果为寻找超可靠马氏体材料提供了具体的策略。