Suppr超能文献

Interaction of RNA polymerase with lacUV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiation.

作者信息

Carpousis A J, Gralla J D

出版信息

J Mol Biol. 1985 May 25;183(2):165-77. doi: 10.1016/0022-2836(85)90210-4.

Abstract

We have used enzymatic and chemical probes to follow the movement of Escherichia coli RNA polymerase along lacUV5 promoter DNA during transcription initiation. The RNA polymerase does not escape from the promoter but remains tightly bound during the synthesis of the initial bases of the transcript. This initial phase of RNA synthesis involves the reiterative synthesis and release of RNA chains up to ten bases long via the RNA polymerase cycling reaction and the enzyme remains sensitive to rifampicin inhibition. When longer chains are made, promoter-specific binding is disrupted and the enzyme forms a rifampicin-resistant elongation complex with downstream DNA sequences. This elongation complex covers less than half as much DNA and lacks the DNase I-hypersensitive sites and the base-specific contacts that characterize promoter-bound RNA polymerase. These results lead us to suggest that lacUV5 mRNA synthesis is primed by a promoter-bound enzyme complex that synthesizes the initial nine or ten bases in the mRNA chain. Subsequently, when a chain of ten bases, or slightly longer, is made, contacts with promoter DNA are irreversibly disrupted, sigma subunit is lost, and a "true" elongation complex is formed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验