School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M19 3PL, UK.
Nat Commun. 2013;4:2551. doi: 10.1038/ncomms3551.
Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.
理解镧系配合物的各向异性电子结构在磁共振成像、荧光细胞标记和量子计算等领域都很重要。在这里,我们提出了一种基于简单静电方法的直观策略,即使在低对称性的情况下,也能够预测镝(III)配合物的磁各向异性。该策略仅依赖于了解配合物的 X 射线结构以及一个既定的观察结果,即在没有高对称性的情况下,镝(III)的基态是沿着各向异性轴量子化的双重态,角动量量子数 mJ=±(15)/2。通过高精度从头算计算得到的 14 个低对称性单核镝(III)配合物的磁各向异性轴非常好地被我们的静电模型所重现。此外,我们还表明,在选择的低对称性多金属配合物中,磁各向异性也能得到很好的预测。