Suppr超能文献

介观相异质研究高效聚合物太阳能电池的材料组合原理

A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity.

机构信息

National Center for Nanoscience and Technology, Beijing 100190, P. R. China.

出版信息

Nanoscale. 2013 Dec 7;5(23):11649-56. doi: 10.1039/c3nr03165a.

Abstract

Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered.

摘要

有机太阳能电池因其独特的优势成为一种很有前途的能量转换候选者。新型富勒烯衍生物作为一种常见的受体,可以通过增加开路电压来提高功率转换效率 (PCE)。作为一种代表性的受体,茚并-C60 双加成物 (ICBA) 可以与聚(3-己基噻吩) (P3HT) 达到高效率。另一方面,新型合成聚合物主要旨在拓宽光吸收范围,已将效率稳步提高到 9%以上。然而,通过简单地将 ICBA 与其他高效供体结合来获得理想的结果具有挑战性。因此,本文使用 P3HT 或高效聚合物 PBDTTT-C-T(噻吩取代的 BDT 与取代的 TT 的共聚物)作为供体和 PCBM 或 ICBA 作为受体来阐明这些材料背后的机制。研究了这些材料的成对组合的光学和光伏性能。在这四个材料组中,PBDTTT-C-T/PCBM 组合获得了 6.2%的最高 PCE,而 PBDTTT-C-T/ICBA 组合获得了 3.5%的最低 PCE。通过光电导原子力显微镜 (pc-AFM) 确定了介观非均质性对局部介观光电性质的影响,并观察了介观性质与宏观器件性能之间的一致性。基于这些结果,提出了一种基于介观相异质性的界面组合模型。本研究为光伏材料的合理选择提供了新的视角,除了传统的能级和吸收光谱匹配外,还必须考虑介观非均质性的匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验