Eom Young-Ho, Shepelyansky Dima L
Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse, France.
PLoS One. 2013 Oct 3;8(10):e74554. doi: 10.1371/journal.pone.0074554. eCollection 2013.
How different cultures evaluate a person? Is an important person in one culture is also important in the other culture? We address these questions via ranking of multilingual Wikipedia articles. With three ranking algorithms based on network structure of Wikipedia, we assign ranking to all articles in 9 multilingual editions of Wikipedia and investigate general ranking structure of PageRank, CheiRank and 2DRank. In particular, we focus on articles related to persons, identify top 30 persons for each rank among different editions and analyze distinctions of their distributions over activity fields such as politics, art, science, religion, sport for each edition. We find that local heroes are dominant but also global heroes exist and create an effective network representing entanglement of cultures. The Google matrix analysis of network of cultures shows signs of the Zipf law distribution. This approach allows to examine diversity and shared characteristics of knowledge organization between cultures. The developed computational, data driven approach highlights cultural interconnections in a new perspective. Dated: June 26, 2013.
不同文化如何评价一个人?在一种文化中重要的人在另一种文化中也重要吗?我们通过对多语言维基百科文章进行排名来解决这些问题。基于维基百科的网络结构,我们使用三种排名算法为维基百科的9个多语言版本中的所有文章分配排名,并研究PageRank、CheiRank和2DRank的一般排名结构。特别是,我们关注与人物相关的文章,为每个版本中不同排名的前30位人物进行识别,并分析他们在政治、艺术、科学、宗教、体育等活动领域的分布差异。我们发现本土英雄占主导地位,但全球英雄也存在,并形成了一个代表文化交织的有效网络。对文化网络的谷歌矩阵分析显示出齐普夫定律分布的迹象。这种方法能够考察不同文化之间知识组织的多样性和共同特征。所开发的基于计算和数据驱动的方法从一个新的视角突出了文化间的联系。日期:2013年6月26日。