Suppr超能文献

荧光团-金属相互作用在光诱导电子转移 (PET) 传感器中的作用:时间依赖密度泛函理论 (TDDFT) 研究。

Role of fluorophore-metal interaction in photoinduced electron transfer (PET) sensors: time-dependent density functional theory (TDDFT) study.

机构信息

Department of Chemistry and Biochemistry, University of North Carolina Wilmington , Wilmington, North Carolina 28403, United States.

出版信息

J Phys Chem A. 2013 Dec 19;117(50):13345-55. doi: 10.1021/jp406624p. Epub 2013 Oct 7.

Abstract

The origins of fluorescence quenching by Hg(II) ion chelation and fluorescence enhancement by Zn(II) ion chelation to a PET sensor are investigated. Specifically, the fluorescence quenching and enhancing mechanisms associated with the ligand ADPA (N-(9-anthracenylmethyl)-N-(2-pyridinylmethyl)-2-pyridinemethanamine), protonated ADPA and metal bound (Zn(II) and Hg(II)) ADPA are studied via density functional theory (DFT) and time-dependent DFT (TDDFT) methods. The study found that a structural change in the excited state of ADPA induces reordering of the frontier molecular orbitals, and the S1 → S0 transition becomes a charge transfer transition from the fluorophore to the tertiary nitrogen of the dipicolylamine (DPA) unit, which is forbidden. Protonation on the tertiary amine or chelation of Zn(II) prevents such changes, and the HOMO-LUMO transition is contained within the fluorophore. Therefore, fluorescence is restored. The chelation of Hg(II), on the other hand, promotes extensive interaction between the Hg(II) ion and the fluorophore, which is reflected in the short Hg(II)-fluorophore distance (3.11 Å). A noticeable structural change upon the S0 → S1 transition is observed in the Hg(II)-ADPA system as well, where the resulting S1 → S0 transition becomes a charge transfer transition from mercury to the fluorophore and the fluorescence is thus quenched. Therefore, the present DFT/TDDFT calculations reproduce the fluorescence on-off behavior associated with the entire ADPA family of complexes, which illustrates that the combination of DFT and TDDFT calculations, including excited state geometry optimization, can be a valuable tool to uncover the detailed fluorescence sensing mechanisms.

摘要

研究了 Hg(II)离子螯合导致荧光猝灭和 Zn(II)离子螯合增强 PET 传感器荧光的起源。具体而言,通过密度泛函理论(DFT)和含时密度泛函理论(TDDFT)方法研究了与配体 ADPA(N-(9-蒽基甲基)-N-(2-吡啶基甲基)-2-吡啶甲胺)、质子化 ADPA 和金属结合(Zn(II)和 Hg(II))ADPA 相关的荧光猝灭和增强机制。研究发现,ADPA 激发态的结构变化导致前线分子轨道重新排列,S1→S0 跃迁成为从荧光团到二吡啶甲胺(DPA)单元叔氮的电荷转移跃迁,这是被禁止的。叔胺质子化或 Zn(II)螯合可防止这种变化,HOMO-LUMO 跃迁包含在荧光团中。因此,荧光得以恢复。另一方面,Hg(II)的螯合促进了 Hg(II)离子与荧光团之间的广泛相互作用,这反映在 Hg(II)-荧光团之间的短距离(3.11 Å)上。在 Hg(II)-ADPA 体系中也观察到 S0→S1 跃迁时的显著结构变化,其中 S1→S0 跃迁成为从汞到荧光团的电荷转移跃迁,荧光因此被猝灭。因此,目前的 DFT/TDDFT 计算再现了与整个 ADPA 系列配合物相关的荧光开-关行为,这表明 DFT 和 TDDFT 计算的结合,包括激发态几何优化,可以成为揭示详细荧光传感机制的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验