Suppr超能文献

具有瓦博格效应的骨肉瘤细胞中线粒体功能障碍和通透性转变。

Mitochondrial dysfunction and permeability transition in osteosarcoma cells showing the Warburg effect.

机构信息

From the Center for Musculoskeletal Research and.

出版信息

J Biol Chem. 2013 Nov 15;288(46):33303-11. doi: 10.1074/jbc.M113.507129. Epub 2013 Oct 7.

Abstract

Metabolic reprogramming in cancer is manifested by persistent aerobic glycolysis and suppression of mitochondrial function and is known as the Warburg effect. The Warburg effect contributes to cancer progression and is considered to be a promising therapeutic target. Understanding the mechanisms used by cancer cells to suppress their mitochondria may lead to development of new approaches to reverse metabolic reprogramming. We have evaluated mitochondrial function and morphology in poorly respiring LM7 and 143B osteosarcoma (OS) cell lines showing the Warburg effect in comparison with actively respiring Saos2 and HOS OS cells and noncancerous osteoblastic hFOB cells. In LM7 and 143B cells, we detected markers of the mitochondrial permeability transition (MPT), such as mitochondrial swelling, depolarization, and membrane permeabilization. In addition, we detected mitochondrial swelling in human OS xenografts in mice and archival human OS specimens using electron microscopy. The MPT inhibitor sanglifehrin A reversed MPT markers and increased respiration in LM7 and 143B cells. Our data suggest that the MPT may play a role in suppression of mitochondrial function, contributing to the Warburg effect in cancer.

摘要

肿瘤中的代谢重编程表现为持续的有氧糖酵解和线粒体功能的抑制,这被称为瓦博格效应。瓦博格效应有助于癌症的进展,被认为是一个有前途的治疗靶点。了解癌细胞用于抑制线粒体的机制可能会导致开发新的方法来逆转代谢重编程。我们评估了在表现出瓦博格效应的低呼吸性 LM7 和 143B 骨肉瘤 (OS) 细胞系与具有活跃呼吸性的 Saos2 和 HOS OS 细胞和非癌性成骨细胞 hFOB 细胞中比较的线粒体功能和形态。在 LM7 和 143B 细胞中,我们检测到线粒体通透性转换 (MPT) 的标志物,如线粒体肿胀、去极化和膜通透性。此外,我们使用电子显微镜检测了在小鼠中的人骨肉瘤异种移植物和存档的人骨肉瘤标本中的线粒体肿胀。MPT 抑制剂桑菲拉林 A 逆转了 LM7 和 143B 细胞中的 MPT 标志物,并增加了呼吸作用。我们的数据表明,MPT 可能在抑制线粒体功能中起作用,有助于癌症中的瓦博格效应。

相似文献

1
Mitochondrial dysfunction and permeability transition in osteosarcoma cells showing the Warburg effect.
J Biol Chem. 2013 Nov 15;288(46):33303-11. doi: 10.1074/jbc.M113.507129. Epub 2013 Oct 7.
2
Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial replication.
J Biol Chem. 2011 Jun 24;286(25):22331-8. doi: 10.1074/jbc.M111.250092. Epub 2011 May 2.
3
Role of the mitochondrial membrane permeability transition in cell death.
Apoptosis. 2007 May;12(5):835-40. doi: 10.1007/s10495-006-0525-7.
4
Exploiting the role of resveratrol in rat mitochondrial permeability transition.
J Membr Biol. 2013 May;246(5):365-73. doi: 10.1007/s00232-013-9540-0. Epub 2013 Apr 12.
5
Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition.
Free Radic Biol Med. 2008 Aug 1;45(3):284-94. doi: 10.1016/j.freeradbiomed.2008.04.021. Epub 2008 Apr 23.
6
A small-molecule DS44170716 inhibits Ca-induced mitochondrial permeability transition.
Sci Rep. 2017 Jun 20;7(1):3864. doi: 10.1038/s41598-017-03651-7.
7
Involvement of cyclophilin D in mitochondrial permeability transition induction in intact cells.
Arch Biochem Biophys. 2009 Jan 1;481(1):59-64. doi: 10.1016/j.abb.2008.10.033. Epub 2008 Oct 30.
8
Intersection between mitochondrial permeability pores and mitochondrial fusion/fission.
Neurochem Res. 2007 Apr-May;32(4-5):917-29. doi: 10.1007/s11064-006-9252-2. Epub 2007 Mar 7.
10
Indium (III) induces isolated mitochondrial permeability transition by inhibiting proton influx and triggering oxidative stress.
J Inorg Biochem. 2017 Dec;177:17-26. doi: 10.1016/j.jinorgbio.2017.08.012. Epub 2017 Sep 8.

引用本文的文献

1
Metabolic reprogramming in osteosarcoma.
Pediatr Discov. 2023 Jul 26;1(2):e18. doi: 10.1002/pdi3.18. eCollection 2023 Sep.
2
Peptidyl-prolyl isomerase F as a prognostic biomarker associated with immune infiltrates and mitophagy in lung adenocarcinoma.
Transl Lung Cancer Res. 2024 Jun 30;13(6):1346-1364. doi: 10.21037/tlcr-24-344. Epub 2024 Jun 20.
3
Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations.
Biomolecules. 2024 Jan 24;14(2):145. doi: 10.3390/biom14020145.
4
Aberrant LETM1 elevation dysregulates mitochondrial functions and energy metabolism and promotes lung metastasis in osteosarcoma.
Genes Dis. 2023 Jun 23;11(3):100988. doi: 10.1016/j.gendis.2023.05.005. eCollection 2024 May.
5
Reprogramming of glucose metabolism: Metabolic alterations in the progression of osteosarcoma.
J Bone Oncol. 2024 Jan 4;44:100521. doi: 10.1016/j.jbo.2024.100521. eCollection 2024 Feb.
6
HOXC13-driven TIMM13 overexpression promotes osteosarcoma cell growth.
Cell Death Dis. 2023 Jul 5;14(7):398. doi: 10.1038/s41419-023-05910-0.
7
8
Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids.
EMBO Rep. 2023 Apr 5;24(4):e55678. doi: 10.15252/embr.202255678. Epub 2023 Mar 6.
10
Insight into the interplay between mitochondria-regulated cell death and energetic metabolism in osteosarcoma.
Front Cell Dev Biol. 2022 Aug 22;10:948097. doi: 10.3389/fcell.2022.948097. eCollection 2022.

本文引用的文献

1
Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin.
J Biol Chem. 2013 Apr 26;288(17):11920-9. doi: 10.1074/jbc.M112.433847. Epub 2013 Mar 7.
2
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.
Cancer Cell. 2012 Mar 20;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014.
3
VDAC inhibition by tubulin and its physiological implications.
Biochim Biophys Acta. 2012 Jun;1818(6):1526-35. doi: 10.1016/j.bbamem.2011.11.004. Epub 2011 Nov 9.
4
Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis.
Cell Calcium. 2011 Sep;50(3):222-33. doi: 10.1016/j.ceca.2011.04.007. Epub 2011 May 23.
5
Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial replication.
J Biol Chem. 2011 Jun 24;286(25):22331-8. doi: 10.1074/jbc.M111.250092. Epub 2011 May 2.
6
Targeting mitochondria as a therapeutic target in cancer.
J Cell Physiol. 2012 Feb;227(2):450-6. doi: 10.1002/jcp.22788.
7
Preclinical characterization of naturally occurring polyketide cyclophilin inhibitors from the sanglifehrin family.
Antimicrob Agents Chemother. 2011 May;55(5):1975-81. doi: 10.1128/AAC.01627-10. Epub 2011 Mar 7.
8
Regulation of cancer cell metabolism.
Nat Rev Cancer. 2011 Feb;11(2):85-95. doi: 10.1038/nrc2981.
9
Imaging cycling tumor hypoxia.
Cancer Res. 2010 Dec 15;70(24):10019-23. doi: 10.1158/0008-5472.CAN-10-2821.
10
Learning from oncocytic tumors: Why choose inefficient mitochondria?
Biochim Biophys Acta. 2011 Jun;1807(6):633-42. doi: 10.1016/j.bbabio.2010.08.006. Epub 2010 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验