Suppr超能文献

前药策略提高核苷类抗病毒抑制剂的疗效。

Prodrug strategies for improved efficacy of nucleoside antiviral inhibitors.

机构信息

aLaboratory of Biochemical Pharmacology, Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, USA bVeterans Affairs Medical Center, Decatur, Georgia, USA.

出版信息

Curr Opin HIV AIDS. 2013 Nov;8(6):556-64. doi: 10.1097/COH.0000000000000007.

Abstract

PURPOSE OF REVIEW

This review focuses on the chemical and pharmacological rationale behind the development of nucleoside antiviral prodrugs (NAPs).

RECENT FINDINGS

Highly efficacious NAPs have been developed that extend and improve the quality of lives of individuals infected with HIV and hepatitis B virus (HBV), herpes viruses, and adenovirus infection in immunocompromised individuals. A very high rate of hepatitis C virus (HCV) cure is now possible using NAPs combined with other direct acting antiviral agents (DAAs).

SUMMARY

Prodrug strategies can address the issues of poor oral bioavailability and delivery of active metabolites to the targeted cells. Additionally, NAPs demonstrate potential for improving deficiencies in oral absorption, metabolism, tissue distribution, cellular accumulation, phosphorylation, and overall potency, in addition to diminishing potential for in-vivo selection of resistant viruses. NAPs continue to be the backbone for the treatment of HIV and HBV, herpesviruses, and adenovirus infections because their active forms are potent, have long intracellular half-lives and are relatively safe with high barrier to resistance.

摘要

目的综述

本文重点介绍了核苷抗病毒前药(NAPs)开发背后的化学和药理学原理。

最近的发现

已经开发出高效的 NAPs,可延长和改善感染 HIV 和乙型肝炎病毒(HBV)、疱疹病毒以及免疫功能低下个体中腺病毒感染的个体的生活质量。现在,使用 NAPs 联合其他直接作用抗病毒药物(DAAs),丙型肝炎病毒(HCV)的治愈率非常高。

摘要

前药策略可以解决生物利用度差和将活性代谢物递送到靶细胞的问题。此外,NAPs 具有改善口服吸收、代谢、组织分布、细胞积累、磷酸化和整体效力的潜力,同时降低体内选择耐药病毒的潜力。NAPs 仍然是治疗 HIV 和 HBV、疱疹病毒和腺病毒感染的基础,因为它们的有效形式具有强大的作用,具有较长的细胞内半衰期,并且具有较高的耐药性屏障,相对安全。

相似文献

1
Prodrug strategies for improved efficacy of nucleoside antiviral inhibitors.
Curr Opin HIV AIDS. 2013 Nov;8(6):556-64. doi: 10.1097/COH.0000000000000007.
2
Advances in nucleoside monophosphate prodrugs as anti-HCV agents.
Antivir Ther. 2010;15(7):935-50. doi: 10.3851/IMP1667.
4
Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting.
J Pharm Sci. 2008 Mar;97(3):1109-34. doi: 10.1002/jps.21047.
5
New antiviral nucleoside prodrugs await application.
Curr Med Chem. 2003 Sep;10(18):1825-43. doi: 10.2174/0929867033457034.
6
Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy.
Br J Pharmacol. 2006 Jan;147(1):1-11. doi: 10.1038/sj.bjp.0706446.
7
Prodrug approaches to improving the oral absorption of antiviral nucleotide analogues.
Expert Opin Drug Deliv. 2009 Apr;6(4):405-20. doi: 10.1517/17425240902824808.
8
Antiviral efficacy upon administration of a HepDirect prodrug of 2'-C-methylcytidine to hepatitis C virus-infected chimpanzees.
Antimicrob Agents Chemother. 2011 Aug;55(8):3854-60. doi: 10.1128/AAC.01152-10. Epub 2011 May 31.
9
Physicochemical properties of the nucleoside prodrug R1626 leading to high oral bioavailability.
Drug Dev Ind Pharm. 2008 Jul;34(7):683-91. doi: 10.1080/03639040701836636.

引用本文的文献

3
Discovery of an L-like Configuration for 3'-Fluoro-5'-norcarbonucleoside Phosphonates as Potent Anti-HIV Agents.
ChemMedChem. 2022 Oct 19;17(20):e202200377. doi: 10.1002/cmdc.202200377. Epub 2022 Sep 15.
5
Substrates and Inhibitors of SAMHD1.
PLoS One. 2017 Jan 3;12(1):e0169052. doi: 10.1371/journal.pone.0169052. eCollection 2017.
6
Integrase Inhibitor Prodrugs: Approaches to Enhancing the Anti-HIV Activity of β-Diketo Acids.
Molecules. 2015 Jul 13;20(7):12623-51. doi: 10.3390/molecules200712623.
7
Prodrugs of phosphonates and phosphates: crossing the membrane barrier.
Top Curr Chem. 2015;360:115-60. doi: 10.1007/128_2014_561.
8
Synthesis of nucleoside phosphate and phosphonate prodrugs.
Chem Rev. 2014 Sep 24;114(18):9154-218. doi: 10.1021/cr5002035. Epub 2014 Aug 21.

本文引用的文献

1
Hypersusceptibility mechanism of Tenofovir-resistant HIV to EFdA.
Retrovirology. 2013 Jun 24;10:65. doi: 10.1186/1742-4690-10-65.
2
Resistance to tenofovir-based regimens during treatment failure of subtype C HIV-1 in South Africa.
Antivir Ther. 2013;18(7):915-20. doi: 10.3851/IMP2652. Epub 2013 Jun 10.
3
Mathematical analysis of multiscale models for hepatitis C virus dynamics under therapy with direct-acting antiviral agents.
Math Biosci. 2013 Sep;245(1):22-30. doi: 10.1016/j.mbs.2013.04.012. Epub 2013 May 16.
4
Sofosbuvir for previously untreated chronic hepatitis C infection.
N Engl J Med. 2013 May 16;368(20):1878-87. doi: 10.1056/NEJMoa1214853. Epub 2013 Apr 23.
5
Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options.
N Engl J Med. 2013 May 16;368(20):1867-77. doi: 10.1056/NEJMoa1214854. Epub 2013 Apr 23.
6
Practical Considerations For Developing Nucleoside Reverse Transcriptase Inhibitors.
Drug Discov Today Technol. 2012 Fall;9(3):e183-e193. doi: 10.1016/j.ddtec.2012.09.003.
9
Comparative effectiveness of antiviral treatment for hepatitis C virus infection in adults: a systematic review.
Ann Intern Med. 2013 Jan 15;158(2):114-23. doi: 10.7326/0003-4819-158-2-201301150-00576.
10
Comprehensive assessment of human pharmacokinetic prediction based on in vivo animal pharmacokinetic data, part 2: clearance.
J Clin Pharmacol. 2013 Feb;53(2):178-91. doi: 10.1177/0091270012440282. Epub 2013 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验