Hollenbaugh Joseph A, Shelton Jadd, Tao Sijia, Amiralaei Sheida, Liu Peng, Lu Xiao, Goetze Russell W, Zhou Longhu, Nettles James H, Schinazi Raymond F, Kim Baek
Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America.
Department of Biomedical Informatics and Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia United States of America.
PLoS One. 2017 Jan 3;12(1):e0169052. doi: 10.1371/journal.pone.0169052. eCollection 2017.
SAMHD1 hydrolyzes 2'-deoxynucleoside-5'-triphosphates (dNTPs) into 2'-deoxynucleosides and inorganic triphosphate products. In this paper, we evaluated the impact of 2' sugar moiety substitution for different nucleotides on being substrates for SAMHD1 and mechanisms of actions for the results. We found that dNTPs ((2'R)-2'-H) are only permissive in the catalytic site of SAMHD1 due to L150 exclusion of (2'R)-2'-F and (2'R)-2'-OH nucleotides. However, arabinose ((2'S)-2'-OH) nucleoside-5'-triphosphates analogs are permissive to bind in the catalytic site and be hydrolyzed by SAMHD1. Moreover, when the (2'S)-2' sugar moiety is increased to a (2'S)-2'-methyl as with the SMDU-TP analog, we detect inhibition of SAMHD1's dNTPase activity. Our computational modeling suggests that (2'S)-2'-methyl sugar moiety clashing with the Y374 of SAMHD1. We speculate that SMDU-TP mechanism of action requires that the analog first docks in the catalytic pocket of SAMHD1 but prevents the A351-V378 helix conformational change from being completed, which is needed before hydrolysis can occur. Collectively we have identified stereoselective 2' substitutions that reveal nucleotide substrate specificity for SAMHD1, and a novel inhibitory mechanism for the dNTPase activity of SAMHD1. Importantly, our data is beneficial for understanding if FDA-approved antiviral and anticancer nucleosides are hydrolyzed by SAMHD1 in vivo.
SAMHD1可将2'-脱氧核苷-5'-三磷酸(dNTPs)水解为2'-脱氧核苷和无机三磷酸产物。在本文中,我们评估了不同核苷酸的2'糖基取代对作为SAMHD1底物的影响以及该结果的作用机制。我们发现,由于L150排斥(2'R)-2'-F和(2'R)-2'-OH核苷酸,dNTPs((2'R)-2'-H)仅能进入SAMHD1的催化位点。然而,阿拉伯糖((2'S)-2'-OH)核苷-5'-三磷酸类似物能够进入催化位点并被SAMHD1水解。此外,当(2'S)-2'糖基增加为(2'S)-2'-甲基时,如SMDU-TP类似物,我们检测到SAMHD1的dNTP酶活性受到抑制。我们的计算模型表明,(2'S)-2'-甲基糖基与SAMHD1的Y374发生冲突。我们推测,SMDU-TP的作用机制要求该类似物首先停靠在SAMHD1的催化口袋中,但阻止A351-V378螺旋构象变化的完成,而这是水解发生之前所必需的。总体而言,我们已经确定了立体选择性的2'取代,揭示了SAMHD1的核苷酸底物特异性,以及一种针对SAMHD1的dNTP酶活性的新型抑制机制。重要的是,我们的数据有助于理解FDA批准的抗病毒和抗癌核苷在体内是否会被SAMHD1水解。