Suppr超能文献

通过同时包含水解和磷酸解机制来提高大肠杆菌中纤维二糖的利用。

Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms.

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332-0100, USA.

出版信息

Biotechnol Lett. 2014 Feb;36(2):301-7. doi: 10.1007/s10529-013-1355-7. Epub 2013 Oct 8.

Abstract

Cellobiose is a major intermediate from cellulase hydrolysis of pretreated plant biomass. Engineering biocatalysts for direct use of cellobiose could eliminate the need for exogenous β-glucosidase. Additionally, rapid removal of cellobiose in a simultaneous saccharification and fermentation facilitates enzymatic hydrolysis as cellobiose is a potent inhibitor for cellulases. We report here improved cellobiose utilization by engineering Escherichia coli to assimilate the disaccharide both hydrolytically and phosphorolytically (shorter fermentation time). Additionally, we demonstrate that engineering intracellular cellobiose utilization circumvents catabolite repression allowing simultaneous fermentation of xylose and cellobiose. Using meso-2,3-butanediol as model product, we further demonstrate that the accelerated carbon metabolism led to improved product formation (higher titers and shorter fermentation times), illustrating the utility of the engineered biocatalysts in biorefinery applications.

摘要

纤维二糖是预处理植物生物质纤维素酶水解的主要中间产物。工程化的生物催化剂可直接利用纤维二糖,从而无需外源性β-葡萄糖苷酶。此外,在同步糖化和发酵过程中快速去除纤维二糖有利于酶解,因为纤维二糖是纤维素酶的有效抑制剂。我们在此报告通过工程化改造大肠杆菌,使其同时水解和磷酸解利用二糖(发酵时间更短),从而提高纤维二糖的利用率。此外,我们还证明了细胞内纤维二糖利用的工程化改造可避免分解代谢物阻遏,从而允许木糖和纤维二糖的同时发酵。使用中间产物 2,3-丁二醇作为模型产物,我们进一步证明了加速的碳代谢导致产物形成的改善(更高的产量和更短的发酵时间),说明了工程化生物催化剂在生物炼制应用中的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验