Nan Hong, Seo Seung-Oh, Oh Eun Joong, Seo Jin-Ho, Cate Jamie H D, Jin Yong-Su
Department of Food Science and Human Nutrition and Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
Appl Microbiol Biotechnol. 2014 Jun;98(12):5757-64. doi: 10.1007/s00253-014-5683-x. Epub 2014 Apr 18.
Production of renewable fuels and chemicals from cellulosic biomass is a critical step towards energy sustainability and reduced greenhouse gas emissions. Microbial cells have been engineered for producing chemicals from cellulosic sugars. Among these chemicals, 2,3-butanediol (2,3-BDO) is a compound of interest due to its diverse applications. While microbial production of 2,3-BDO with high yields and productivities has been reported, there are concerns associated with utilization of potential pathogenic bacteria and inefficient utilization of cellulosic sugars. To address these problems, we engineered 2,3-BDO production in Saccharomyces cerevisiae, especially from cellobiose, a prevalent sugar in cellulosic hydrolysates. Specifically, we overexpressed alsS and alsD from Bacillus subtilis to convert pyruvate into 2,3-BDO via α-acetolactate and acetoin in an engineered cellobiose fermenting S. cerevisiae. Under oxygen-limited conditions, the resulting strain was able to produce 2,3-BDO. Still, major carbon flux went to ethanol, resulting in substantial amounts of ethanol produced as a byproduct. To enhance pyruvate flux to 2,3-BDO through elimination of the pyruvate decarboxylation reaction, we employed a deletion mutant of both PDC1 and PDC5 for producing 2,3-BDO. When a cellobiose utilization pathway, consisting of a cellobiose transporter and intracellular β-glucosidase, and the 2,3-BDO producing pathway were introduced in a pyruvate decarboxylase deletion mutant, the resulting strain produced 2,3-BDO without ethanol production from cellobiose under oxygen-limited conditions. A titer of 5.29 g/l 2,3-BDO with a productivity of 0.22 g/l h and yield of 0.29 g 2,3-BDO/g cellobiose was attained. These results suggest the possibility of producing 2,3-BDO safely and sustainably from cellulosic hydrolysates.
从纤维素生物质生产可再生燃料和化学品是迈向能源可持续性和减少温室气体排放的关键一步。微生物细胞已被改造用于从纤维素糖生产化学品。在这些化学品中,2,3-丁二醇(2,3-BDO)因其多种应用而备受关注。虽然已报道微生物能高产且高效地生产2,3-BDO,但存在与潜在病原菌利用相关的问题以及纤维素糖利用效率低下的问题。为解决这些问题,我们对酿酒酵母中的2,3-BDO生产进行了工程改造,特别是利用纤维二糖(纤维素水解产物中的一种常见糖)进行生产。具体而言,我们在经过工程改造的纤维二糖发酵酿酒酵母中过表达来自枯草芽孢杆菌的alsS和alsD,以通过α-乙酰乳酸和乙偶姻将丙酮酸转化为2,3-BDO。在限氧条件下,所得菌株能够生产2,3-BDO。不过,主要的碳通量流向了乙醇,导致产生大量乙醇作为副产物。为通过消除丙酮酸脱羧反应增强丙酮酸向2,3-BDO的通量,我们采用了PDC1和PDC5的缺失突变体来生产2,3-BDO。当将由纤维二糖转运蛋白和细胞内β-葡萄糖苷酶组成的纤维二糖利用途径以及2,3-BDO生产途径引入丙酮酸脱羧酶缺失突变体时,所得菌株在限氧条件下从纤维二糖生产2,3-BDO而不产生乙醇。获得了5.29 g/l的2,3-BDO滴度,生产率为0.22 g/l h,产率为0.29 g 2,3-BDO/g纤维二糖。这些结果表明从纤维素水解产物安全且可持续地生产2,3-BDO的可能性。