Suppr超能文献

基于模型的多组分自组装过程优化。

Model-driven optimization of multicomponent self-assembly processes.

机构信息

Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, and Computational Biology Group, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17205-10. doi: 10.1073/pnas.1310092110. Epub 2013 Oct 7.

Abstract

Here, we report an engineering approach toward multicomponent self-assembly processes by developing a methodology to circumvent spurious, metastable assemblies. The formation of metastable aggregates often hampers self-assembly of molecular building blocks into the desired nanostructures. Strategies are explored to master the pathway complexity and avoid off-pathway aggregates by optimizing the rate of assembly along the correct pathway. We study as a model system the coassembly of two monomers, the R- and S-chiral enantiomers of a π-conjugated oligo(p-phenylene vinylene) derivative. Coassembly kinetics are analyzed by developing a kinetic model, which reveals the initial assembly of metastable structures buffering free monomers and thereby slows the formation of thermodynamically stable assemblies. These metastable assemblies exert greater influence on the thermodynamically favored self-assembly pathway if the ratio between both monomers approaches 1:1, in agreement with experimental results. Moreover, competition by metastable assemblies is highly temperature dependent and hampers the assembly of equilibrium nanostructures most effectively at intermediate temperatures. We demonstrate that the rate of the assembly process may be optimized by tuning the cooling rate. Finally, it is shown by simulation that increasing the driving force for assembly stepwise by changing the solvent composition may circumvent metastable pathways and thereby force the assembly process directly into the correct pathway.

摘要

在这里,我们通过开发一种规避假稳聚集体的方法,报告了一种用于多组分自组装过程的工程方法。假稳聚集体的形成常常阻碍分子构建块自组装成所需的纳米结构。通过优化沿着正确途径的组装速率,我们探索了控制途径复杂性并避免非途径聚集体的策略。我们以两个单体(手性聚对苯乙炔衍生物的 R-和 S-对映异构体)的共组装为模型体系进行研究。通过开发一个动力学模型来分析共组装动力学,该模型揭示了最初组装假稳结构的动力学,缓冲了游离单体,从而减缓了热力学稳定组装体的形成。如果两种单体之间的比例接近 1:1,这些假稳聚集体对热力学有利的自组装途径的影响更大,这与实验结果一致。此外,假稳聚集体的竞争强烈依赖于温度,并且在中等温度下最有效地阻碍了平衡纳米结构的组装。我们证明可以通过调整冷却速率来优化组装过程的速率。最后,通过模拟表明,通过改变溶剂组成逐步增加组装的驱动力可以规避假稳途径,从而迫使组装过程直接进入正确途径。

相似文献

1
Model-driven optimization of multicomponent self-assembly processes.基于模型的多组分自组装过程优化。
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17205-10. doi: 10.1073/pnas.1310092110. Epub 2013 Oct 7.
2
Pathway complexity in supramolecular polymerization.超分子聚合中的途径复杂性。
Nature. 2012 Jan 18;481(7382):492-6. doi: 10.1038/nature10720.
9
Chiral Expression and Morphology Control in Polymer Dispersion Systems.聚合物分散体系中的手性表达与形态控制
Chempluschem. 2022 May;87(5):e202100556. doi: 10.1002/cplu.202100556. Epub 2022 Feb 18.

引用本文的文献

3
Supramolecular Block Copolymers under Thermodynamic Control.热力学控制下的超分子嵌段共聚物。
J Am Chem Soc. 2018 Jun 13;140(23):7168-7175. doi: 10.1021/jacs.8b02706. Epub 2018 May 18.
4
Model-driven engineering of supramolecular buffering by multivalency.多价作用驱动的超分子缓冲的模型工程。
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12882-12887. doi: 10.1073/pnas.1710993114. Epub 2017 Nov 20.
7
Non-equilibrium supramolecular polymerization.非平衡超分子聚合
Chem Soc Rev. 2017 Sep 18;46(18):5476-5490. doi: 10.1039/c7cs00121e.

本文引用的文献

1
Catalytic control over supramolecular gel formation.催化控制超分子凝胶的形成。
Nat Chem. 2013 May;5(5):433-7. doi: 10.1038/nchem.1617. Epub 2013 Apr 7.
8
Controlling chemical self-assembly by solvent-dependent dynamics.通过溶剂依赖性动力学控制化学自组装。
J Am Chem Soc. 2012 Aug 15;134(32):13482-91. doi: 10.1021/ja305512g. Epub 2012 Aug 2.
9
10
Wire-on-wire growth of fluorescent organic heterojunctions.荧光有机杂化异质结的线对线生长。
J Am Chem Soc. 2012 Feb 15;134(6):2880-3. doi: 10.1021/ja209815f. Epub 2012 Feb 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验