Kheirabadi Mitra, Sharafian Zohreh, Naderi-Manesh Hossein, Heineman Udo, Gohlke Ulrich, Hosseinkhani Saman
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-175, Iran; Department of Biology, Faculty of Science, Hakim Sabzevari University, Khorasan razavi, Sabzevar 17976-487, Iran.
Biochim Biophys Acta. 2013 Dec;1834(12):2729-35. doi: 10.1016/j.bbapap.2013.09.022. Epub 2013 Oct 6.
Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission.
在镁离子(Mg(2+))、三磷酸腺苷(ATP)和分子氧存在的情况下,萤火虫生物发光反应由荧光素酶催化进行。荧光素酶结构的改变或检测条件的调整决定了萤火虫荧光素酶的生物发光颜色。在不同的甲虫荧光素酶中,红纹扁角甲(Phrixothrix hirtus)铁路虫发出黄色或红色生物发光。序列比对分析表明,红纹扁角甲的红色发光荧光素酶在353位有一个额外的精氨酸残基,而其他萤火虫荧光素酶中没有。据报道,在重要的柔性环350 - 359中插入精氨酸会使生物发光颜色从绿色变为红色,并且最佳温度活性也会增加。为了解释萤火虫荧光素酶的颜色调节机制,分别以2.7Å和2.2Å的分辨率测定了土耳其光萤(Lampyris turkestanicus)荧光素酶的天然结构和突变体(E354R/356R/H431Y)的结构。两种土耳其光萤荧光素酶结构的比较表明,在该区域添加两个精氨酸会使这个柔性环的构象发生显著变化。此外,其表面可及性受到相当大的影响,并且添加两个带正电荷的残基会形成一些离子键。此外,我们注意到,通过将该位置的组氨酸替换为酪氨酸,His431与柔性环的氢键模式发生了变化。萤火虫荧光素酶中柔性环(351 - 359位残基)的并列以及相应的离子键和氢键对于颜色发射至关重要。