Suppr超能文献

具有单向全变差和小框架正则化的稳健去条带方法。

Robust destriping method with unidirectional total variation and framelet regularization.

作者信息

Chang Yi, Fang Houzhang, Yan Luxin, Liu Hai

出版信息

Opt Express. 2013 Oct 7;21(20):23307-23. doi: 10.1364/OE.21.023307.

Abstract

Multidetector imaging systems often suffer from the problem of stripe noise and random noise, which greatly degrade the imaging quality. In this paper, we propose a variational destriping method that combines unidirectional total variation and framelet regularization. Total-variation-based regularizations are considered effective in removing different kinds of stripe noise, and framelet regularization can efficiently preserve the detail information. In essence, these two regularizations are complementary to each other. Moreover, the proposed method can also efficiently suppress random noise. The split Bregman iteration method is employed to solve the resulting minimization problem. Comparative results demonstrate that the proposed method significantly outperforms state-of-the-art destriping methods on both qualitative and quantitative assessments.

摘要

多探测器成像系统经常受到条纹噪声和随机噪声问题的困扰,这大大降低了成像质量。在本文中,我们提出了一种变分去条纹方法,该方法结合了单向全变差和框架小波正则化。基于全变差的正则化方法在去除各种条纹噪声方面被认为是有效的,而框架小波正则化可以有效地保留细节信息。从本质上讲,这两种正则化方法相互补充。此外,所提出的方法还可以有效地抑制随机噪声。采用分裂Bregman迭代法来解决由此产生的最小化问题。比较结果表明,所提出的方法在定性和定量评估方面均显著优于现有最先进的去条纹方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验