Suppr超能文献

基于优化变分模型的遥感图像去条带处理

Destriping of Remote Sensing Images by an Optimized Variational Model.

作者信息

Yan Fei, Wu Siyuan, Zhang Qiong, Liu Yunqing, Sun Haonan

机构信息

School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China.

Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China.

出版信息

Sensors (Basel). 2023 Aug 30;23(17):7529. doi: 10.3390/s23177529.

Abstract

Satellite sensors often capture remote sensing images that contain various types of stripe noise. The presence of these stripes significantly reduces the quality of the remote images and severely affects their subsequent applications in other fields. Despite the existence of many stripe noise removal methods in the research, they often result in the loss of fine details during the destriping process, and some methods even generate artifacts. In this paper, we proposed a new unidirectional variational model to remove horizontal stripe noise. The proposed model fully considered the directional characteristics and structural sparsity of the stripe noise, as well as the prior features of the underlying image, to design different sparse constraints, and the ℓp quasinorm was introduced in these constraints to better describe these sparse characteristics, thus achieving a more excellent destriping effect. Moreover, we employed the fast alternating direction method of multipliers (ADMM) to solve the proposed non-convex model. This significantly improved the efficiency and robustness of the proposed method. The qualitative and quantitative results from simulated and real data experiments confirm that our method outperforms existing destriping approaches in terms of stripe noise removal and preservation of image details.

摘要

卫星传感器经常捕捉到包含各种条纹噪声的遥感图像。这些条纹的存在显著降低了遥感图像的质量,并严重影响其在其他领域的后续应用。尽管在研究中存在许多条纹噪声去除方法,但它们在去条纹过程中往往会导致精细细节的丢失,并且一些方法甚至会产生伪影。在本文中,我们提出了一种新的单向变分模型来去除水平条纹噪声。所提出的模型充分考虑了条纹噪声的方向特性和结构稀疏性,以及基础图像的先验特征,以设计不同的稀疏约束,并在这些约束中引入了ℓp拟范数来更好地描述这些稀疏特征,从而实现了更优异的去条纹效果。此外,我们采用快速交替方向乘子法(ADMM)来求解所提出的非凸模型。这显著提高了所提方法的效率和鲁棒性。模拟和真实数据实验的定性和定量结果证实,我们的方法在去除条纹噪声和保留图像细节方面优于现有的去条纹方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cda/10490704/311252b50b4a/sensors-23-07529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验