Kim Inho, Lee Taek Seong, Jeong Doo Seok, Lee Wook Seong, Kim Won Mok, Lee Kyeong-Seok
Opt Express. 2013 Jul 1;21 Suppl 4:A669-76. doi: 10.1364/OE.21.00A669.
Transparent metal grid combining with plasmonic absorption enhancement is a promising replacement to indium tin oxide thin films. We numerically demonstrate metal grids in one or two dimension lead to plasmonic absorption enhancements in ultrathin organic solar cells. In this paper, we study optical design of metal grids for plasmonic light trapping and identify different plasmonic modes of the surface plasmon polaritons excited at the interfaces of glass/metal grids, metal grids/active layers, and the localized surface plasmon resonance of the metal grids using numerical calculations. One dimension metal grids with the optimal design of a width and a period lead to the absorption enhancement in the ultrathin active layers of 20 nm thickness by a factor of 2.6 under transverse electric polarized light compared to the case without the metal grids. Similarly, two dimensional metal grids provide the absorption enhancement by a factor of 1.8 under randomly polarized light.
结合等离子体吸收增强的透明金属网格是氧化铟锡薄膜的一种有前景的替代品。我们通过数值模拟证明,一维或二维金属网格可增强超薄有机太阳能电池中的等离子体吸收。在本文中,我们研究了用于等离子体光捕获的金属网格的光学设计,并通过数值计算确定了在玻璃/金属网格、金属网格/活性层界面激发的表面等离激元极化激元的不同等离子体模式以及金属网格的局域表面等离子体共振。与没有金属网格的情况相比,具有最佳宽度和周期设计的一维金属网格在横向电极化光下可使20纳米厚的超薄活性层中的吸收增强2.6倍。同样,二维金属网格在随机极化光下可使吸收增强1.8倍。