Ota Yasutomo, Watanabe Katsuyuki, Iwamoto Satoshi, Arakawa Yasuhiko
Opt Express. 2013 Aug 26;21(17):19778-89. doi: 10.1364/OE.21.019778.
Self-frequency conversion (SFC), where both laser oscillation and nonlinear frequency conversion occurs in the same laser crystal, has been used to efficiently extend the operational wavelength of lasers. Downsizing of the cavity mode volume (V) and increasing the quality factor (Q) could lead to a more efficient conversion process, mediated by enhanced n-th order nonlinearities that generally scale as (Q/V)(n). Here, we demonstrate nanocavity-based SFC by utilizing photonic crystal nanocavity quantum dot lasers. The high Q and small V supported in semiconductor-based nanocavities facilitate efficient SFC to generate visible light, even with only a few photons present in the laser cavity. The combined broadband quantum dot gain and small device footprint enables the monolithic integration of 26 different-color nanolasers (spanning 493-627 nm) within a micro-scale region. These nanolasers provide a new platform for studying few-photon nonlinear optics, and for realizing full-color lasers on a single semiconductor chip.
自频率转换(SFC)是指激光振荡和非线性频率转换在同一激光晶体中发生,已被用于有效地扩展激光的工作波长。减小腔模体积(V)并提高品质因数(Q)可导致更高效的转换过程,这由增强的n阶非线性介导,通常按(Q/V)ⁿ 缩放。在此,我们通过利用光子晶体纳米腔量子点激光器展示了基于纳米腔的自频率转换。基于半导体的纳米腔中支持的高Q和小V有利于高效的自频率转换以产生可见光,即使激光腔中仅存在少数光子。宽带量子点增益与小器件尺寸相结合,能够在微尺度区域内单片集成26种不同颜色的纳米激光器(波长范围为493 - 627 nm)。这些纳米激光器为研究少光子非线性光学以及在单个半导体芯片上实现全色激光器提供了一个新平台。