Suppr超能文献

拮抗物种的空间结构以可预测的方式影响共同进化。

The spatial structure of antagonistic species affects coevolution in predictable ways.

机构信息

Laboratorio de Paleobiología, Sección Paleontología, Facultad de Ciencias de la Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.

出版信息

Am Nat. 2013 Nov;182(5):578-91. doi: 10.1086/673257. Epub 2013 Sep 5.

Abstract

A current challenge in evolutionary ecology is to assess how the spatial structure of interacting species shapes coevolution. Previous work on the geographic mosaic of coevolution has shown that coevolution depends on the spatial structure, the strength of selection, and gene flow across populations. We used spatial subgraphs and coevolutionary models to evaluate how spatial structure and the location of coevolutionary hotspots (sites in which reciprocal selection occurs) and coldspots (sites in which unidirectional selection occurs) contribute to the dynamics of coevolution and the maintenance of polymorphisms. Specifically, we developed a new approach based on the Laplacian matrices of spatial subgraphs to explore the tendency of interacting species to evolve toward stable polymorphisms. Despite the complex interplay between gene flow and the strength of reciprocal selection, simple rules drive coevolution in small groups of spatially structured interacting populations. Hotspot location and the spatial organization of coldspots are crucial for understanding patterns in the maintenance of polymorphisms. Moreover, the degree of spatial variation in the outcomes of the coevolutionary process can be predicted from the network pattern of gene flow among sites. Our work provides us with novel tools that can be used in the field or the laboratory to predict the effects of spatial structure on coevolutionary trajectories.

摘要

当前进化生态学的一个挑战是评估相互作用的物种的空间结构如何塑造协同进化。关于协同进化的地理镶嵌研究表明,协同进化取决于空间结构、种群间的选择强度和基因流。我们使用空间子图和协同进化模型来评估空间结构以及协同进化热点(发生相互选择的位点)和冷点(发生单向选择的位点)的位置如何促进协同进化的动态和多态性的维持。具体来说,我们基于空间子图的拉普拉斯矩阵开发了一种新方法,以探索相互作用的物种向稳定多态性进化的趋势。尽管基因流和相互选择的强度之间存在复杂的相互作用,但在空间结构相互作用的小种群中,简单的规则可以驱动协同进化。热点位置和冷点的空间组织对于理解多态性维持的模式至关重要。此外,协同进化过程结果的空间变化程度可以从站点间基因流的网络模式中预测。我们的工作为我们提供了新的工具,可以在野外或实验室中使用,以预测空间结构对协同进化轨迹的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验