IEEE J Biomed Health Inform. 2014 Jul;18(4):1214-24. doi: 10.1109/JBHI.2013.2284476. Epub 2013 Oct 4.
This work suggests a supervised hierarchical Bayesian model for surface electromyography (sEMG)-based motion classification and its strategy analysis. The proposed model unifies the optimal feature extraction and classification through probabilistic inference and learning by identifying the latent neural states (LNSs) that govern a collection of sEMG signals. In addition, the inference step provides an approach to identify distinct muscle activation strategies according to sEMG patterns based on LNSs. To validate the model, nine-class classification using four sEMG sensors on the limb motions is tested. The model performance is evaluated with relatively high and low activation levels, generalized classification across subjects and online classification. The model, based on LNSs to capture various motions, is assessed with respect to activation levels, individual subjects and transition during online classification. Our approach cannot only classify sEMG patterns, but also provide the interpretation of sEMG strategic patterns. This work supports the potential of the proposed model for sEMG control-based applications.
这项工作提出了一种基于监督分层贝叶斯模型的表面肌电(sEMG)运动分类及其策略分析方法。该模型通过概率推断和学习来统一最优特征提取和分类,通过识别控制一系列 sEMG 信号的潜在神经状态(LNS)来实现这一点。此外,推断步骤提供了一种根据 LNS 基于 sEMG 模式识别不同肌肉激活策略的方法。为了验证该模型,在肢体运动中使用四个 sEMG 传感器进行了九类分类测试。该模型的性能是通过相对较高和较低的激活水平、跨受试者的广义分类和在线分类进行评估的。该模型基于 LNS 来捕获各种运动,针对激活水平、个体受试者和在线分类过程中的转换进行了评估。我们的方法不仅可以对 sEMG 模式进行分类,还可以提供对 sEMG 策略模式的解释。这项工作支持了所提出的模型在基于 sEMG 控制的应用中的潜力。