Suppr超能文献

抗体的 Fc 区域影响不同成熟状态下西尼罗河病毒的中和作用。

The Fc region of an antibody impacts the neutralization of West Nile viruses in different maturation states.

机构信息

Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.

出版信息

J Virol. 2013 Dec;87(24):13729-40. doi: 10.1128/JVI.02340-13. Epub 2013 Oct 9.

Abstract

Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection.

摘要

黄病毒感染的细胞由于病毒成熟过程效率低下而分泌结构不均一的病毒群体。黄病毒组装成无感染性的不成熟病毒,由包膜 (E) 和前膜 (prM) 蛋白异源二聚体三聚体组成。prM 的切割是病毒成熟过程中的一个必需过程,尽管对于感染性病毒颗粒来说,这种切割通常仍然不完全。以前的工作表明,病毒成熟的效率可以通过改变病毒表面原本隐蔽的表位的可及性来影响抗体中和。在这项研究中,我们表明尽管单克隆抗体 (MAb) E33 识别的是一个可及表位,即结构域 III 侧脊 (DIII-LR),但其中和效力对西尼罗河病毒 (WNV) 的成熟状态敏感。对 166 个 E 蛋白 DIII-LR 变体进行的全面表位作图研究表明,MAb E33 在 E 蛋白上的功能足迹与表征良好的 DIII-LR MAb E16 略有不同。值得注意的是,E 蛋白残基 306 处的芳香族取代消除了 E33 IgG 对成熟状态的敏感性,E33 Fab 片段的中和效力不受病毒成熟状态变化的影响。我们提出,E33 IgG 在成熟病毒上的结合以一种影响随后与附近位点结合的抗体的方式将 Fc 区域定向。这种 Fc 介导的空间位阻是一种新的机制,通过该机制,病毒的成熟状态调节了针对黄病毒感染的体液免疫反应的效力。

相似文献

1
The Fc region of an antibody impacts the neutralization of West Nile viruses in different maturation states.
J Virol. 2013 Dec;87(24):13729-40. doi: 10.1128/JVI.02340-13. Epub 2013 Oct 9.
2
Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization.
PLoS Pathog. 2008 May 9;4(5):e1000060. doi: 10.1371/journal.ppat.1000060.
3
Combined effects of the structural heterogeneity and dynamics of flaviviruses on antibody recognition.
J Virol. 2014 Oct;88(20):11726-37. doi: 10.1128/JVI.01140-14. Epub 2014 Jul 30.
5
A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus.
PLoS Pathog. 2011 Jun;7(6):e1002111. doi: 10.1371/journal.ppat.1002111. Epub 2011 Jun 30.
6
Structural basis of West Nile virus neutralization by a therapeutic antibody.
Nature. 2005 Sep 29;437(7059):764-9. doi: 10.1038/nature03956.
7
A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions.
Nat Microbiol. 2019 Jan;4(1):71-77. doi: 10.1038/s41564-018-0283-7. Epub 2018 Nov 19.
8
A plant-produced vaccine protects mice against lethal West Nile virus infection without enhancing Zika or dengue virus infectivity.
Vaccine. 2018 Mar 27;36(14):1846-1852. doi: 10.1016/j.vaccine.2018.02.073. Epub 2018 Feb 26.
9
Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence.
J Virol. 2016 Apr 14;90(9):4757-4770. doi: 10.1128/JVI.02861-15. Print 2016 May.
10
Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step.
J Virol. 2009 Jul;83(13):6494-507. doi: 10.1128/JVI.00286-09. Epub 2009 Apr 22.

引用本文的文献

1
pr-independent biogenesis of infectious mature Zika virus particles.
bioRxiv. 2024 Sep 12:2024.09.12.612520. doi: 10.1101/2024.09.12.612520.
2
Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity.
Cell Host Microbe. 2021 Nov 10;29(11):1634-1648.e5. doi: 10.1016/j.chom.2021.09.006. Epub 2021 Oct 4.
3
Substitutions at Loop Regions of TMUV E Protein Domain III Differentially Impair Viral Entry and Assembly.
Front Microbiol. 2021 Jun 28;12:688172. doi: 10.3389/fmicb.2021.688172. eCollection 2021.
4
Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure.
Microorganisms. 2021 May 29;9(6):1172. doi: 10.3390/microorganisms9061172.
5
Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies.
Cell Host Microbe. 2020 May 13;27(5):710-724.e7. doi: 10.1016/j.chom.2020.04.007.
6
Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain.
Viral Immunol. 2020 Jan/Feb;33(1):22-37. doi: 10.1089/vim.2019.0082. Epub 2019 Nov 5.
7
Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion.
mSphere. 2018 Feb 7;3(1). doi: 10.1128/mSphere.00518-17. eCollection 2018 Jan-Feb.
8
Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity.
Microbiol Mol Biol Rev. 2016 Oct 26;80(4):989-1010. doi: 10.1128/MMBR.00024-15. Print 2016 Dec.
9
Structural basis of potent Zika-dengue virus antibody cross-neutralization.
Nature. 2016 Aug 4;536(7614):48-53. doi: 10.1038/nature18938. Epub 2016 Jun 23.
10
Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III.
Virology. 2016 Sep;496:97-105. doi: 10.1016/j.virol.2016.05.024. Epub 2016 Jun 7.

本文引用的文献

1
Resurgence of West Nile neurologic disease in the United States in 2012: what happened? What needs to be done?
Antiviral Res. 2013 Jul;99(1):1-5. doi: 10.1016/j.antiviral.2013.04.015. Epub 2013 Apr 26.
2
The global distribution and burden of dengue.
Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7.
3
Broad and potent neutralization of HIV-1 by a gp41-specific human antibody.
Nature. 2012 Nov 15;491(7424):406-12. doi: 10.1038/nature11544. Epub 2012 Sep 18.
4
Degrees of maturity: the complex structure and biology of flaviviruses.
Curr Opin Virol. 2012 Apr;2(2):168-75. doi: 10.1016/j.coviro.2012.02.011. Epub 2012 Mar 23.
5
Complex phenotypes in mosquitoes and mice associated with neutralization escape of a Dengue virus type 1 monoclonal antibody.
Virology. 2012 Jun 5;427(2):127-34. doi: 10.1016/j.virol.2012.02.010. Epub 2012 Mar 9.
6
Conservation of the DENV-2 type-specific and DEN complex-reactive antigenic sites among DENV-2 genotypes.
Virology. 2012 Jan 20;422(2):386-92. doi: 10.1016/j.virol.2011.10.020. Epub 2011 Dec 5.
8
Antibody-mediated neutralization of flaviviruses: a reductionist view.
Virology. 2011 Mar 15;411(2):306-15. doi: 10.1016/j.virol.2010.12.020. Epub 2011 Jan 20.
10
Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles.
J Virol. 2010 Aug;84(16):8353-8. doi: 10.1128/JVI.00696-10. Epub 2010 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验