Suppr超能文献

基于空间相关性的伪迹检测用于脑电图自动癫痫发作检测

Spatial correlation based artifact detection for automatic seizure detection in EEG.

作者信息

Skupch Ana M, Dollfuß Peter, Fürbaß Franz, Gritsch Gerhard, Hartmann Manfred M, Perko Hannes, Pataraia Ekaterina, Lindinger Gerald, Kluge Tilmann

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1972-5. doi: 10.1109/EMBC.2013.6609915.

Abstract

Automatic EEG-processing systems such as seizure detection systems are more and more in use to cope with the large amount of data that arises from long-term EEG-monitorings. Since artifacts occur very often during the recordings and disturb the EEG-processing, it is crucial for these systems to have a good automatic artifact detection. We present a novel, computationally inexpensive automatic artifact detection system that uses the spatial distribution of the EEG-signal and the location of the electrodes to detect artifacts on electrodes. The algorithm was evaluated by including it into the automatic seizure detection system EpiScan and applying it to a very large amount of data including a large variety of EEGs and artifacts.

摘要

诸如癫痫发作检测系统之类的自动脑电图处理系统越来越多地被用于处理长期脑电图监测产生的大量数据。由于在记录过程中伪迹经常出现并干扰脑电图处理,因此对于这些系统来说,拥有良好的自动伪迹检测至关重要。我们提出了一种新颖的、计算成本低的自动伪迹检测系统,该系统利用脑电图信号的空间分布和电极位置来检测电极上的伪迹。通过将该算法纳入自动癫痫发作检测系统EpiScan并将其应用于包括各种脑电图和伪迹的大量数据,对该算法进行了评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验