Pawar Kamlesh, Egan Gary F, Zhang Jingxin
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2619-23. doi: 10.1109/EMBC.2013.6610077.
Dynamic imaging is challenging in MRI and acceleration techniques are usually needed to acquire dynamic scene. K-t sparse is an acceleration technique based on compressed sensing, it acquires fewer amounts of data in k-t space by pseudo random ordering of phase encodes and reconstructs dynamic scene by exploiting sparsity of k-t space in transform domain. Another recently introduced technique accelerates dynamic MRI scans by acquiring k-space data in aliased form. K-space aliasing technique uses multiple RF excitation pulses to deliberately acquire aliased k-space data. During reconstruction a simple Fourier transformation along time frames can unaliase the acquired aliased data. This paper presents a novel method to combine k-t sparse and k-space aliasing to achieve higher acceleration than each of the individual technique alone. In this particular combination, a very critical factor of compressed sensing, the ratio of the number of acquired phase encodes to the number of total phase encode (n/N) increases therefore compressed sensing component of reconstruction performs exceptionally well. Comparison of k-t sparse and the proposed technique for acceleration factors of 4, 6 and 8 is demonstrated in simulation on cardiac data.
动态成像在磁共振成像(MRI)中具有挑战性,通常需要加速技术来获取动态场景。K-t稀疏是一种基于压缩感知的加速技术,它通过对相位编码进行伪随机排序在k-t空间中采集较少的数据量,并通过利用变换域中k-t空间的稀疏性来重建动态场景。另一种最近引入的技术通过以混叠形式采集k空间数据来加速动态MRI扫描。k空间混叠技术使用多个射频激励脉冲故意采集混叠的k空间数据。在重建过程中,沿时间帧进行简单的傅里叶变换可以消除采集到的混叠数据的混叠。本文提出了一种将k-t稀疏和k空间混叠相结合的新方法,以实现比单独使用每种技术更高的加速。在这种特殊的组合中,压缩感知的一个非常关键的因素,即采集到的相位编码数量与总相位编码数量的比值(n/N)增加,因此重建的压缩感知组件表现异常出色。在心脏数据模拟中展示了k-t稀疏和所提出的技术在加速因子为4、6和8时的比较。