Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
Med Phys. 2018 Jan;45(1):202-213. doi: 10.1002/mp.12639. Epub 2017 Nov 20.
To develop and validate a fast dynamic MR imaging scheme. A novel approach termed K-T ARTificial Sparsity enhanced GROWL (K-T ARTS-GROWL) is proposed that integrates dynamic artificial sparsity and GROWL-based parallel imaging (PI).
Golden-angle radial k-space data are acquired with the free-breathing sampling scheme and then sorted into a time series by grouping consecutive spokes into temporal frames. The reconstruction framework sequentially applies PI and dynamic artificial sparsity. In the implementation, GROWL is taken as a special PI instance for its high computational efficiency and the K-T sparse is exploited to improve the PI reconstruction performance, because the dynamic MR images are often sparse in the x-f domain. In the final reconstruction procedure, artificial sparsity is constructed and fed back to the previous reconstruction.
The K-T ARTS-GROWL results in high spatial and temporal resolution reconstructions. By exploiting dynamic artificial sparsity, the acceleration capability is further improved compared to the PI alone. The experimental results demonstrate that K-T ARTS-GROWL leads to significantly better image quality (P < 0.05) than the frame-by-frame GROWL and frame-by-frame ARTS-GROWL for in vivo liver imaging. Compared with the tested K-T reconstruction algorithms, the K-T ARTS-GROWL results in a better or comparable image quality and temporal resolution with greatly decreased computational costs.
The proposed technique enables sparse, fast imaging of high spatial, high temporal resolutions for dynamic MRI.
开发并验证一种快速动态磁共振成像方案。提出了一种称为 K-T ARTificial Sparsity enhanced GROWL(K-T ARTS-GROWL)的新方法,该方法集成了动态人工稀疏和基于 GROWL 的并行成像(PI)。
使用自由呼吸采样方案采集黄金角度径向 k 空间数据,然后通过将连续的 spokes分组到时间帧中,将其排序成时间序列。重建框架依次应用 PI 和动态人工稀疏。在实现中,GROWL 被用作一种特殊的 PI 实例,因为它具有高效的计算效率,而 K-T 稀疏则被利用来提高 PI 重建性能,因为动态 MR 图像通常在 x-f 域中稀疏。在最终的重建过程中,人工稀疏被构建并反馈到前面的重建中。
K-T ARTS-GROWL 实现了高空间和高时间分辨率的重建。通过利用动态人工稀疏,可以进一步提高与单独使用 PI 相比的加速能力。实验结果表明,与逐帧 GROWL 和逐帧 ARTS-GROWL 相比,K-T ARTS-GROWL 可显著提高体内肝脏成像的图像质量(P<0.05)。与测试的 K-T 重建算法相比,K-T ARTS-GROWL 在大大降低计算成本的同时,可实现更好或可比的图像质量和时间分辨率。
所提出的技术可实现高空间、高时间分辨率的稀疏、快速动态 MRI 成像。