Suppr超能文献

技术注释:并行成像和动态人工稀疏框架的顺序组合,用于快速自由呼吸黄金角径向动态 MRI:K-T ARTS-GROWL。

Technical Note: Sequential combination of parallel imaging and dynamic artificial sparsity framework for rapid free-breathing golden-angle radial dynamic MRI: K-T ARTS-GROWL.

机构信息

Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.

State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.

出版信息

Med Phys. 2018 Jan;45(1):202-213. doi: 10.1002/mp.12639. Epub 2017 Nov 20.

Abstract

PURPOSE

To develop and validate a fast dynamic MR imaging scheme. A novel approach termed K-T ARTificial Sparsity enhanced GROWL (K-T ARTS-GROWL) is proposed that integrates dynamic artificial sparsity and GROWL-based parallel imaging (PI).

METHODS

Golden-angle radial k-space data are acquired with the free-breathing sampling scheme and then sorted into a time series by grouping consecutive spokes into temporal frames. The reconstruction framework sequentially applies PI and dynamic artificial sparsity. In the implementation, GROWL is taken as a special PI instance for its high computational efficiency and the K-T sparse is exploited to improve the PI reconstruction performance, because the dynamic MR images are often sparse in the x-f domain. In the final reconstruction procedure, artificial sparsity is constructed and fed back to the previous reconstruction.

RESULTS

The K-T ARTS-GROWL results in high spatial and temporal resolution reconstructions. By exploiting dynamic artificial sparsity, the acceleration capability is further improved compared to the PI alone. The experimental results demonstrate that K-T ARTS-GROWL leads to significantly better image quality (P < 0.05) than the frame-by-frame GROWL and frame-by-frame ARTS-GROWL for in vivo liver imaging. Compared with the tested K-T reconstruction algorithms, the K-T ARTS-GROWL results in a better or comparable image quality and temporal resolution with greatly decreased computational costs.

CONCLUSION

The proposed technique enables sparse, fast imaging of high spatial, high temporal resolutions for dynamic MRI.

摘要

目的

开发并验证一种快速动态磁共振成像方案。提出了一种称为 K-T ARTificial Sparsity enhanced GROWL(K-T ARTS-GROWL)的新方法,该方法集成了动态人工稀疏和基于 GROWL 的并行成像(PI)。

方法

使用自由呼吸采样方案采集黄金角度径向 k 空间数据,然后通过将连续的 spokes分组到时间帧中,将其排序成时间序列。重建框架依次应用 PI 和动态人工稀疏。在实现中,GROWL 被用作一种特殊的 PI 实例,因为它具有高效的计算效率,而 K-T 稀疏则被利用来提高 PI 重建性能,因为动态 MR 图像通常在 x-f 域中稀疏。在最终的重建过程中,人工稀疏被构建并反馈到前面的重建中。

结果

K-T ARTS-GROWL 实现了高空间和高时间分辨率的重建。通过利用动态人工稀疏,可以进一步提高与单独使用 PI 相比的加速能力。实验结果表明,与逐帧 GROWL 和逐帧 ARTS-GROWL 相比,K-T ARTS-GROWL 可显著提高体内肝脏成像的图像质量(P<0.05)。与测试的 K-T 重建算法相比,K-T ARTS-GROWL 在大大降低计算成本的同时,可实现更好或可比的图像质量和时间分辨率。

结论

所提出的技术可实现高空间、高时间分辨率的稀疏、快速动态 MRI 成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验