Suppr超能文献

甲状腺超声图像中人工诱导伪像的自动去除

Automatic removal of manually induced artefacts in ultrasound images of thyroid gland.

作者信息

Narayan Nikhil S, Marziliano Pina, Hobbs Christopher G L

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3399-402. doi: 10.1109/EMBC.2013.6610271.

Abstract

Manually induced artefacts, like caliper marks and anatomical labels, render an ultrasound (US) image incapable of being subjected to further processes of Computer Aided Diagnosis (CAD). In this paper, we propose a technique to remove these artefacts and restore the image as accurately as possible. The technique finds application as a pre-processing step when developing unsupervised segmentation algorithms for US images that deal with automatic estimation of the number of segments and clustering. The novelty of the algorithm lies in the image processing pipeline chosen to automatically identify the artefacts and is developed based on the histogram properties of the artefacts. The algorithm was able to successfully restore the images to a high quality when it was executed on a dataset of 18 US images of the thyroid gland on which the artefacts were induced manually by a doctor. Further experiments on an additional dataset of 10 unmarked US images of the thyroid gland on which the artefacts were simulated using Matlab showed that the restored images were again of high quality with a PSNR > 38 dB and free of any manually induced artefacts.

摘要

诸如卡尺标记和解剖学标签等人工诱导伪像会使超声(US)图像无法进行进一步的计算机辅助诊断(CAD)处理。在本文中,我们提出了一种去除这些伪像并尽可能准确地恢复图像的技术。该技术在为超声图像开发无监督分割算法时用作预处理步骤,这些算法涉及自动估计分割数量和聚类。该算法的新颖之处在于所选择的用于自动识别伪像的图像处理管道,它是基于伪像的直方图特性开发的。当在由医生手动诱导伪像的18幅甲状腺超声图像数据集上执行该算法时,它能够成功地将图像恢复到高质量。在另外10幅未标记的甲状腺超声图像数据集上进行的进一步实验中,使用Matlab模拟了伪像,结果表明恢复后的图像再次具有高质量,峰值信噪比(PSNR)> 38 dB,并且没有任何人工诱导的伪像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验