Khalili Azam, Rastegarnia Amir, Islam Md Kafiul, Yang Zhi
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3515-8. doi: 10.1109/EMBC.2013.6610300.
In this paper we propose an algorithm for distributed optimization in mobile nodes. Compared with many published works, an important consideration here is that the nodes do not know the cost function beforehand. Instead of decision-making based on linear combination of the neighbor estimates, the proposed algorithm relies on information-rich nodes that are iteratively identified. To quickly find these nodes, the algorithm adopts a larger step size during the initial iterations. The proposed algorithm can be used in many different applications, such as distributed odor source localization and mobile robots. Comparative simulation results are presented to support the proposed algorithm.
在本文中,我们提出了一种用于移动节点分布式优化的算法。与许多已发表的作品相比,这里一个重要的考虑因素是节点事先不知道成本函数。所提出的算法不是基于邻居估计的线性组合进行决策,而是依赖于通过迭代识别出的信息丰富的节点。为了快速找到这些节点,该算法在初始迭代期间采用更大的步长。所提出的算法可用于许多不同的应用,如分布式气味源定位和移动机器人。给出了对比仿真结果以支持所提出的算法。