Suppr超能文献

基于单试次脑电图的情感识别:使用核特征情感模式和自适应支持向量机

Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.

作者信息

Liu Yi-Hung, Wu Chien-Te, Kao Yung-Hwa, Chen Ya-Ting

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4306-9. doi: 10.1109/EMBC.2013.6610498.

Abstract

Single-trial electroencephalography (EEG)-based emotion recognition enables us to perform fast and direct assessments of human emotional states. However, previous works suggest that a great improvement on the classification accuracy of valence and arousal levels is still needed. To address this, we propose a novel emotional EEG feature extraction method: kernel Eigen-emotion pattern (KEEP). An adaptive SVM is also proposed to deal with the problem of learning from imbalanced emotional EEG data sets. In this study, a set of pictures from IAPS are used for emotion induction. Results based on seven participants show that KEEP gives much better classification results than the widely-used EEG frequency band power features. Also, the adaptive SVM greatly improves classification performance of commonly-adopted SVM classifier. Combined use of KEEP and adaptive SVM can achieve high average valence and arousal classification rates of 73.42% and 73.57%. The highest classification rates for valence and arousal are 80% and 79%, respectively. The results are very promising.

摘要

基于单试次脑电图(EEG)的情绪识别能够让我们对人类情绪状态进行快速且直接的评估。然而,先前的研究表明,在效价和唤醒水平的分类准确率上仍有很大的提升空间。为解决这一问题,我们提出了一种新颖的情绪EEG特征提取方法:核特征情绪模式(KEEP)。还提出了一种自适应支持向量机(SVM),以处理从不平衡的情绪EEG数据集进行学习的问题。在本研究中,使用了一组来自国际情绪图片系统(IAPS)的图片来诱发情绪。基于七名参与者的结果表明,KEEP比广泛使用的EEG频段功率特征给出了更好的分类结果。此外,自适应SVM极大地提高了常用SVM分类器的分类性能。KEEP和自适应SVM的联合使用能够实现效价和唤醒的平均分类率分别高达73.42%和73.57%。效价和唤醒的最高分类率分别为80%和79%。这些结果很有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验