Suppr超能文献

用于脑磁图自适应非线性波束形成器分析的非参数置换阈值法揭示了人类大脑中的振荡神经元动力学。

Non-parametric permutation thresholding for adaptive nonlinear beamformer analysis on MEG revealed oscillatory neuronal dynamics in human brain.

作者信息

Ishii Ryouhei, Canuet Leonides, Aoki Yasunori, Ikeda Shunichiro, Hata Masahiro, Iwase Masao, Takeda Masatoshi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4807-10. doi: 10.1109/EMBC.2013.6610623.

Abstract

Adaptive nonlinear beamformer technique for analyzing magnetoencephalography (MEG) data has been proved to be powerful tool for both brain research and clinical applications. A general method of analyzing multiple subject data with a formal statistical treatment for the group data has been developed and applied for various types of MEG data. Our latest application of this method was frontal midline theta rhythm (Fmθ), which indicates focused attention and appears widely distributed over medial prefrontal areas in EEG recordings. To localize cortical generators of the magnetic counterpart of Fmθ precisely and identify cortical sources and underlying neural activity associated with mental calculation processing (i.e., arithmetic subtraction), we applied adaptive nonlinear beamformer and permutation analysis on MEG data. As a result, it was indicated that Fmθ is generated in the dorsal anterior cingulate and adjacent medial prefrontal cortex. Gamma event-related synchronization is as an index of activation in right parietal regions subserving mental subtraction associated with basic numerical processing and number-based spatial attention. Gamma desynchronization appeared in the right lateral prefrontal cortex, likely representing a mechanism to interrupt neural activity that can interfere with the ongoing cognitive task. We suggest that the combination of adaptive nonlinear beamformer and permutation analysis on MEG data is quite powerful tool to reveal the oscillatory neuronal dynamics in human brain.

摘要

用于分析脑磁图(MEG)数据的自适应非线性波束形成器技术已被证明是脑研究和临床应用的有力工具。一种对组数据进行形式化统计处理来分析多受试者数据的通用方法已经被开发出来,并应用于各种类型的MEG数据。我们对该方法的最新应用是针对额中线θ节律(Fmθ),它表明注意力集中,并且在脑电图记录中广泛分布于内侧前额叶区域。为了精确地定位Fmθ磁对应物的皮质发生器,并识别与心算处理(即算术减法)相关的皮质源和潜在神经活动,我们对MEG数据应用了自适应非线性波束形成器和置换分析。结果表明,Fmθ是在背侧前扣带回和相邻的内侧前额叶皮质中产生的。伽马事件相关同步作为右侧顶叶区域激活的指标,该区域参与与基本数字处理和基于数字的空间注意相关的心算减法。伽马去同步出现在右侧外侧前额叶皮质,可能代表一种中断可能干扰正在进行的认知任务的神经活动的机制。我们认为,对MEG数据进行自适应非线性波束形成器和置换分析相结合是揭示人类大脑振荡神经元动力学的相当有力的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验