Suppr超能文献

使用线性和非线性脑电图分析方法检测失神发作癫痫

Absence seizure epilepsy detection using linear and nonlinear EEG analysis methods.

作者信息

Sakkalis Vangelis, Giannakakis Giorgos, Farmaki Christina, Mousas Abdou, Pediaditis Matthew, Vorgia Pelagia, Tsiknakis Manolis

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6333-6. doi: 10.1109/EMBC.2013.6611002.

Abstract

In this study, we investigated three measures capable of detecting absence seizures with increased sensitivity based on different underlying assumptions. Namely, an information-based method known as Approximate Entropy, a nonlinear alternative (Order Index), and a linear variance analysis approach. The results on the long-term EEG data suggest increased accuracy in absence seizure detection achieving sensitivity as high as 97.33% with no further application of any sophisticated classification scheme.

摘要

在本研究中,我们基于不同的潜在假设,研究了三种能够以更高灵敏度检测失神发作的方法。具体而言,一种基于信息的方法,称为近似熵;一种非线性替代方法(阶次指数);以及一种线性方差分析方法。对长期脑电图数据的分析结果表明,在不进一步应用任何复杂分类方案的情况下,失神发作检测的准确性有所提高,灵敏度高达97.33%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验