Giannakakis Giorgos, Sakkalis Vangelis, Pediaditis Matthew, Farmaki Christina, Vorgia Pelagia, Tsiknakis Manolis
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:413-6. doi: 10.1109/EMBC.2013.6609524.
Epilepsy is one of the most common chronic neurological diseases and the most common neurological chronic disease of childhood. The electroencephalogram (EEG) signal provides significant information neurologists take into consideration in the investigation and analysis of epileptic seizures. The Approximate Entropy (ApEn) is a formulated statistical parameter commonly used to quantify the regularity of a time series data of physiological signals. In this paper ApEn is used in order to detect the onset of epileptic seizures. The results show that the method provides promising results towards efficient detection of onset and ending of seizures, based on analyzing the corresponding EEG signals. ApEn parameters affect the method's behavior, suggesting that a more detailed study and a consistent methodology of their determination should be established. A preliminary analysis for the proper determination of these parameters is performed towards improving the results.
癫痫是最常见的慢性神经疾病之一,也是儿童最常见的神经慢性疾病。脑电图(EEG)信号为神经科医生在癫痫发作的调查和分析中提供了重要信息。近似熵(ApEn)是一种常用于量化生理信号时间序列数据规律性的统计参数。本文使用ApEn来检测癫痫发作的起始。结果表明,该方法基于对相应EEG信号的分析,在有效检测癫痫发作的起始和结束方面提供了有前景的结果。ApEn参数会影响该方法的性能,这表明应建立更详细的研究及其确定的一致方法。为了改善结果,对这些参数的正确确定进行了初步分析。