Suppr超能文献

一种基于内镜高速视频对语音障碍进行自动分类的多尺度乘积方法。

A multiscale product approach for an automatic classification of voice disorders from endoscopic high-speed videos.

作者信息

Unger Jakob, Schuster Maria, Hecker Dietmar J, Schick Bernhard, Lohscheller Joerg

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:7360-3. doi: 10.1109/EMBC.2013.6611258.

Abstract

Direct observation of vocal fold vibration is indispensable for a clinical diagnosis of voice disorders. Among current imaging techniques, high-speed videoendoscopy constitutes a state-of-the-art method capturing several thousand frames per second of the vocal folds during phonation. Recently, a method for extracting descriptive features from phonovibrograms, a two-dimensional image containing the spatio-temporal pattern of vocal fold dynamics, was presented. The derived features are closely related to a clinically established protocol for functional assessment of pathologic voices. The discriminative power of these features for different pathologic findings and configurations has not been assessed yet. In the current study, a collective of 220 subjects is considered for two- and multi-class problems of healthy and pathologic findings. The performance of the proposed feature set is compared to conventional feature reduction routines and was found to clearly outperform these. As such, the proposed procedure shows great potential for diagnostical issues of vocal fold disorders.

摘要

直接观察声带振动对于嗓音障碍的临床诊断至关重要。在当前的成像技术中,高速视频内镜检查是一种先进的方法,能够在发声过程中每秒捕捉数千帧声带图像。最近,提出了一种从声振图中提取描述性特征的方法,声振图是一种包含声带动态时空模式的二维图像。所提取的特征与用于病理性嗓音功能评估的临床既定方案密切相关。然而,这些特征对于不同病理结果和形态的判别能力尚未得到评估。在本研究中,针对健康和病理结果的二分类和多分类问题,纳入了220名受试者。将所提出的特征集的性能与传统的特征约简程序进行了比较,结果发现其明显优于这些程序。因此,所提出的方法在声带疾病的诊断问题上显示出巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验