Suppr超能文献

叶片水力学 I:从单个细胞到组织的传输性质的尺度分析。

Leaf hydraulics I: scaling transport properties from single cells to tissues.

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Theor Biol. 2014 Jan 7;340:251-66. doi: 10.1016/j.jtbi.2013.09.036. Epub 2013 Oct 7.

Abstract

In leaf tissues, water may move through the symplast or apoplast as a liquid, or through the airspace as vapor, but the dominant path remains in dispute. This is due, in part, to a lack of models that describe these three pathways in terms of experimental variables. We show that, in plant water relations theory, the use of a hydraulic capacity in a manner analogous to a thermal capacity, though it ignores mechanical interactions between cells, is consistent with a special case of the more general continuum mechanical theory of linear poroelasticity. The resulting heat equation form affords a great deal of analytical simplicity at a minimal cost: we estimate an expected error of less than 12%, compared to the full set of equations governing linear poroelastic behavior. We next consider the case for local equilibrium between protoplasts, their cell walls, and adjacent air spaces during isothermal hydration transients to determine how accurately simple volume averaging of material properties (a 'composite' model) describes the hydraulic properties of leaf tissue. Based on typical hydraulic parameters for individual cells, we find that a composite description for tissues composed of thin walled cells with air spaces of similar size to the cells, as in photosynthetic tissues, is a reasonable preliminary assumption. We also expect isothermal transport in such cells to be dominated by the aquaporin-mediated cell-to-cell path. In the non-isothermal case, information on the magnitude of the thermal gradients is required to assess the dominant phase of water transport, liquid or vapor.

摘要

在叶片组织中,水可以作为液体通过质外体或共质体移动,也可以作为蒸汽通过气腔移动,但主要路径仍存在争议。部分原因是缺乏能够根据实验变量描述这三种途径的模型。我们表明,在植物水分关系理论中,以类似于热容量的方式使用水力容量,尽管它忽略了细胞之间的力学相互作用,但与更一般的线性多孔弹性连续体力学理论的一个特例是一致的。由此产生的热方程形式以最小的代价提供了很大的分析简单性:与线性多孔弹性行为的完整方程组相比,我们估计预期误差小于 12%。接下来,我们考虑在等温热化瞬变过程中原生质体、细胞壁和相邻气腔之间局部平衡的情况,以确定简单的材料性质体积平均(“复合”模型)如何准确地描述叶片组织的水力性质。基于单个细胞的典型水力参数,我们发现,对于由薄壁细胞组成的组织,以及与细胞大小相似的气腔的组织,复合描述是一个合理的初步假设。我们还预计,在这种细胞中,等温热传递将主要由水通道蛋白介导的细胞间途径控制。在非等温情况下,需要有关热梯度大小的信息来评估水传输的主导相,是液体还是蒸汽。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验