Department of Chemistry and Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 426-791, Republic of Korea.
ACS Nano. 2011 Dec 27;5(12):9421-7. doi: 10.1021/nn204350w. Epub 2011 Nov 22.
The development of organic/inorganic hybrid nanocomposite systems that enable efficient solar energy conversion has been important for applications in solar cell research. Nanostructured carbon-based systems, in particular C(60), offer attractive strategies to collect and transport electrons generated in a light harvesting assembly. We have assembled CdSe-C(60) nanocomposites by chemically linking CdSe quantum dots (QDs) with thiol-functionalized C(60). The photoinduced charge separation and collection of electrons in CdSe QD-C(60) nanocomposites have been evaluated using transient absorption spectroscopy and photoelectrochemical measurements. The rate constant for electron transfer between excited CdSe QD and C(60) increased with the decreasing size of the CdSe QD (7.9 × 10(9) s(-1) (4.5 nm), 1.7 × 10(10) s(-1) (3.2 nm), and 9.0 × 10(10) s(-1) (2.6 nm)). Slower hole transfer and faster charge recombination and transport events were found to dominate over the forward electron injection process, thus limiting the deliverance of maximum power in CdSe QD-C(60)-based solar cells. The photoinduced charge separation between CdSe QDs and C(60) opens up new design strategies for developing light harvesting assemblies.
用于太阳能电池研究的应用中,开发能够实现高效太阳能转换的有机/无机杂化纳米复合体系一直很重要。纳米结构的碳基体系,特别是 C(60),提供了有吸引力的策略来收集和传输在光收集组件中产生的电子。我们通过用巯基功能化的 C(60)化学连接 CdSe 量子点 (QD) 来组装 CdSe-C(60)纳米复合材料。通过瞬态吸收光谱和光电化学测量评估了 CdSe QD-C(60)纳米复合材料中光诱导电荷分离和电子收集。激发的 CdSe QD 和 C(60)之间电子转移的速率常数随 CdSe QD 的尺寸减小而增加(7.9×10(9) s(-1) (4.5nm)、1.7×10(10) s(-1) (3.2nm) 和 9.0×10(10) s(-1) (2.6nm))。发现较慢的空穴转移和较快的电荷复合和输运事件主导了正向电子注入过程,从而限制了基于 CdSe QD-C(60)的太阳能电池的最大功率输出。CdSe QD 和 C(60)之间的光诱导电荷分离为开发光收集组件开辟了新的设计策略。