植物嘌呤核苷分解代谢利用了一种在拟南芥中生成黄苷所必需的鸟苷脱氨酶。
Plant purine nucleoside catabolism employs a guanosine deaminase required for the generation of xanthosine in Arabidopsis.
机构信息
Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany.
出版信息
Plant Cell. 2013 Oct;25(10):4101-9. doi: 10.1105/tpc.113.117184. Epub 2013 Oct 15.
Purine nucleotide catabolism is common to most organisms and involves a guanine deaminase to convert guanine to xanthine in animals, invertebrates, and microorganisms. Using metabolomic analysis of mutants, we demonstrate that Arabidopsis thaliana uses an alternative catabolic route employing a highly specific guanosine deaminase (GSDA) not reported from any organism so far. The enzyme is ubiquitously expressed and deaminates exclusively guanosine and 2'-deoxyguanosine but no other aminated purines, pyrimidines, or pterines. GSDA belongs to the cytidine/deoxycytidylate deaminase family of proteins together with a deaminase involved in riboflavin biosynthesis, the chloroplastic tRNA adenosine deaminase Arg and a predicted tRNA-specific adenosine deaminase 2 in A. thaliana. GSDA is conserved in plants, including the moss Physcomitrella patens, but is absent in the algae and outside the plant kingdom. Our data show that xanthosine is exclusively generated through the deamination of guanosine by GSDA in A. thaliana, excluding other possible sources like the dephosphorylation of xanthosine monophosphate. Like the nucleoside hydrolases NUCLEOSIDE HYDROLASE1 (NSH1) and NSH2, GSDA is located in the cytosol, indicating that GMP catabolism to xanthine proceeds in a mostly cytosolic pathway via guanosine and xanthosine. Possible implications for the biosynthetic route of purine alkaloids (caffeine and theobromine) and ureides in other plants are discussed.
嘌呤核苷酸代谢在大多数生物中都很常见,涉及到一种鸟嘌呤脱氨酶,它将鸟嘌呤转化为动物、无脊椎动物和微生物中的黄嘌呤。通过对突变体的代谢组学分析,我们证明拟南芥使用了一种替代的代谢途径,该途径使用一种高度特异性的鸟嘌呤脱氨酶(GSDA),迄今为止尚未从任何生物中报道过。该酶广泛表达,仅脱氨基鸟嘌呤和 2'-脱氧鸟嘌呤,但不脱氨基其他氨基嘌呤、嘧啶或蝶呤。GSDA 属于胞苷/脱氧胞苷脱氨酶家族的蛋白质,与参与核黄素生物合成的脱氨酶、质体 tRNA 腺苷脱氨酶 Arg 和拟南芥中预测的 tRNA 特异性腺苷脱氨酶 2 一起。GSDA 在植物中是保守的,包括苔藓 Physcomitrella patens,但在藻类和植物界之外不存在。我们的数据表明,在拟南芥中,黄嘌呤核苷是通过 GSDA 的脱氨基作用唯一产生的,排除了其他可能的来源,如黄嘌呤核苷单磷酸的去磷酸化。与核苷水解酶 NUCLEOSIDE HYDROLASE1 (NSH1) 和 NSH2 一样,GSDA 位于细胞质中,这表明 GMP 代谢为黄嘌呤主要通过细胞质途径进行,途径为鸟嘌呤和黄嘌呤核苷。讨论了其他植物中嘌呤生物碱(咖啡因和可可碱)和脲的生物合成途径的可能影响。