Department of Bioengineering, Rice University Houston, TX, USA.
Front Physiol. 2013 Oct 9;4:285. doi: 10.3389/fphys.2013.00285. eCollection 2013.
We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches-stochasticity, complexity, and scale-with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility toward synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications.
我们回顾了通过计算理解细胞相互作用的方法,以便为哺乳动物细胞的合成设计提供指导,用于转化应用,如再生医学和癌症治疗。在这样做的过程中,我们认为工程哺乳动物细胞的挑战为利用计算系统生物学的进展提供了绝佳机会。我们通过在系统生物学中使用特定的方法和范例来解决现有合成生物工程方法的主要挑战——随机性、复杂性和规模——来系统地支持这一主张。此外,我们描述了一组关键的多样化计算技术,包括基于代理的建模、贝叶斯网络分析、图论和吉列斯皮模拟,这些技术对于合成生物学具有特定的实用性。最后,我们研究了合成生物学在医学和健康方面的哺乳动物应用,以及计算系统生物学如何帮助这些应用的持续发展。