Integrated Diagnostics, Seattle, WA 98109, USA.
Sci Transl Med. 2013 Oct 16;5(207):207ra142. doi: 10.1126/scitranslmed.3007013.
Each year, millions of pulmonary nodules are discovered by computed tomography and subsequently biopsied. Because most of these nodules are benign, many patients undergo unnecessary and costly invasive procedures. We present a 13-protein blood-based classifier that differentiates malignant and benign nodules with high confidence, thereby providing a diagnostic tool to avoid invasive biopsy on benign nodules. Using a systems biology strategy, we identified 371 protein candidates and developed a multiple reaction monitoring (MRM) assay for each. The MRM assays were applied in a three-site discovery study (n = 143) on plasma samples from patients with benign and stage IA lung cancer matched for nodule size, age, gender, and clinical site, producing a 13-protein classifier. The classifier was validated on an independent set of plasma samples (n = 104), exhibiting a negative predictive value (NPV) of 90%. Validation performance on samples from a nondiscovery clinical site showed an NPV of 94%, indicating the general effectiveness of the classifier. A pathway analysis demonstrated that the classifier proteins are likely modulated by a few transcription regulators (NF2L2, AHR, MYC, and FOS) that are associated with lung cancer, lung inflammation, and oxidative stress networks. The classifier score was independent of patient nodule size, smoking history, and age, which are risk factors used for clinical management of pulmonary nodules. Thus, this molecular test provides a potential complementary tool to help physicians in lung cancer diagnosis.
每年,数以百万计的肺结节通过计算机断层扫描发现,随后进行活检。由于大多数结节是良性的,许多患者接受了不必要和昂贵的侵入性手术。我们提出了一种基于 13 种蛋白质的血液分类器,可以高度准确地区分恶性和良性结节,从而提供一种诊断工具,避免对良性结节进行侵入性活检。使用系统生物学策略,我们鉴定了 371 种候选蛋白,并为每种蛋白开发了多重反应监测 (MRM) 测定法。在一项对大小、年龄、性别和临床部位匹配的良性和 I 期肺癌患者的血浆样本的三地发现性研究(n = 143)中应用了这些 MRM 检测,产生了一个 13 种蛋白的分类器。该分类器在一组独立的血浆样本(n = 104)上进行了验证,阴性预测值(NPV)为 90%。在非发现性临床部位的样本上的验证性能显示 NPV 为 94%,表明该分类器的普遍有效性。通路分析表明,分类器蛋白可能受到与肺癌、肺部炎症和氧化应激网络相关的少数转录调节剂(NF2L2、AHR、MYC 和 FOS)的调节。分类器评分与患者结节大小、吸烟史和年龄无关,这些是用于肺结节临床管理的风险因素。因此,该分子测试提供了一种潜在的互补工具,可帮助医生进行肺癌诊断。