Suppr超能文献

小功率映射变形下奇异相关矩阵的新兴谱

Emerging spectra of singular correlation matrices under small power-map deformations.

作者信息

Schäfer Rudi, Seligman Thomas H

机构信息

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P. 62210 Cuernavaca, México.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032115. doi: 10.1103/PhysRevE.88.032115. Epub 2013 Sep 10.

Abstract

Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.

摘要

相关矩阵是分析一般复杂系统,尤其是金融市场时间演化的标准工具。然而,大多数分析都假定基础时间序列是平稳的。这往往是一个有效性各异且常常存疑的假设。随着使用的时间序列变短,该假设的有效性会提高。如果使用多个时间序列,这意味着要分析高度奇异的相关矩阵。我们通过使用所谓的幂映射来解决这个问题,幂映射是为了减少噪声而引入的。它的非线性打破了零特征值的简并性,并且我们分析由此产生的谱对相关性的敏感度。这种敏感度将在不相关和相关的威沙特系综中得到证明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验